 B.O. Almroth, P. Stern and F.A. Brogan, Automatic choice of global shape functions in structural analysis. AIAA Journal 16 (1978) 525–528. [CrossRef]
 Z.J. Bai, Krylov subspace techniques for reducedorder modeling of largescale dynamical systems. Appl. Numer. Math. 43 (2002) 9–44. [CrossRef] [MathSciNet]
 E. Balmes, Parametric families of reduced finite element models: Theory and applications. Mechanical Syst. Signal Process. 10 (1996) 381–394. [CrossRef]
 M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An “empirical interpolation” method: Application to efficient reducedbasis discretization of partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 339 (2004) 667–672.
 A. Barrett and G. Reddien, On the reduced basis method. Z. Angew. Math. Mech. 75 (1995) 543–549. [MathSciNet]
 T.T. Bui, M. Damodaran and K. Willcox, Proper orthogonal decomposition extensions for parametric applications in transonic aerodynamics (AIAA Paper 20034213), in Proceedings of the 15th AIAA Computational Fluid Dynamics Conference (2003).
 J. Chen and SM. Kang, Modelorder reduction of nonlinear MEMS devices through arclengthbased KarhunenLoéve decomposition, in Proceeding of the IEEE international Symposium on Circuits and Systems 2 (2001) 457–460.
 Y. Chen and J. White, A quadratic method for nonlinear model order reduction, in Proceeding of the international Conference on Modeling and Simulation of Microsystems (2000) 477–480.
 E.A. Christensen, M. Brøns and J.N. Sørensen, Evaluation of proper orthogonal decompositionbased decomposition techniques applied to parameterdependent nonturbulent flows. SIAM J. Scientific Computing 21 (2000) 1419–1434. [CrossRef]
 P. Erdös, Problems and results on the theory of interpolation, II. Acta Math. Acad. Sci. 12 (1961) 235–244. [CrossRef]
 J.P. Fink and W.C. Rheinboldt, On the error behavior of the reduced basis technique for nonlinear finite element approximations. Z. Angew. Math. Mech. 63 (1983) 21–28. [CrossRef] [MathSciNet]
 M. Grepl, ReducedBasis Approximations for TimeDependent Partial Differential Equations: Application to Optimal Control. Ph.D. thesis, Massachusetts Institute of Technology (2005).
 M.A. Grepl and A.T. Patera, A posteriori error bounds for reducedbasis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences]
 M.A. Grepl, N.C. Nguyen, K. Veroy, A.T. Patera and G.R. Liu, Certified rapid solution of parametrized partial differential equations for realtime applications, in Proceedings of the 2^{nd} Sandia Workshop of PDEConstrained Optimization: Towards RealTime and OnLine PDEConstrained Optimization, SIAM Computational Science and Engineering Book Series (2007) pp. 197–212.
 P. Guillaume and M. Masmoudi, Solution to the timeharmonic Maxwell's equations in a waveguide: use of higherorder derivatives for solving the discrete problem. SIAM J. Numer. Anal. 34 (1997) 1306–1330. [CrossRef] [MathSciNet]
 M.D. Gunzburger, Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms. Academic Press, Boston (1989).
 K. Ito and S.S. Ravindran, A reduced basis method for control problems governed by PDEs, in Control and Estimation of Distributed Parameter Systems, W. Desch, F. Kappel and K. Kunisch Eds., Birkhäuser (1998) 153–168.
 K. Ito and S.S. Ravindran, A reducedorder method for simulation and control of fluid flows. J. Comp. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet]
 J.L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Nonlinéaires. Dunod (1969).
 L. Machiels, Y. Maday, I.B. Oliveira, A.T. Patera and D.V. Rovas, Output bounds for reducedbasis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 153–158.
 Y. Maday, A.T. Patera and G. Turinici, Global a priori convergence theory for reducedbasis approximation of singleparameter symmetric coercive elliptic partial differential equations. C. R. Acad. Sci. Paris Sér. I Math. 335 (2002) 289–294.
 M. Meyer and H.G. Matthies, Efficient model reduction in nonlinear dynamics using the KarhunenLoève expansion and dualweightedresidual methods. Comp. Mech. 31 (2003) 179–191. [CrossRef]
 N.C. Nguyen, ReducedBasis Approximation and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis. Ph.D. thesis, SingaporeMIT Alliance, National University of Singapore (2005).
 N.C. Nguyen, K. Veroy and A.T. Patera, Certified realtime solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Kluwer Academic Publishing, Springer (2005) pp. 1523–1558.
 A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA Journal 18 (1980) 455–462. [CrossRef]
 J.S. Peterson, The reduced basis method for incompressible viscous flow calculations. SIAM J. Sci. Stat. Comput. 10 (1989) 777–786. [CrossRef]
 J.R. Phillips, Projectionbased approaches for model reduction of weakly nonlinear systems, timevarying systems, in IEEE Transactions On ComputerAided Design of Integrated Circuit and Systems 22 (2003) 171–187.
 T.A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations. Math. Comp. 45 (1985) 487–496. [CrossRef] [MathSciNet]
 C. Prud'homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable realtime solution of parametrized partial differential equations: Reducedbasis output bound methods. J. Fluids Eng. 124 (2002) 70–80. [CrossRef]
 A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer, 2nd edition (1997).
 A. Quarteroni, R. Sacco and F. Saleri, Numerical Mathematics, Texts in Applied Mathematics, Vol. 37. Springer, New York (1991).
 M. Rewienski and J. White, A trajectory piecewiselinear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices, in IEEE Transactions On ComputerAided Design of Integrated Circuit and Systems 22 (2003) 155–170.
 W.C. Rheinboldt, On the theory and error estimation of the reduced basis method for multiparameter problems. Nonlinear Anal. Theory Methods Appl. 21 (1993) 849–858. [CrossRef] [MathSciNet]
 T.J. Rivlin, An introduction to the approximation of functions. Dover Publications Inc., New York (1981).
 J.M.A. Scherpen, Balancing for nonlinear systems. Syst. Control Lett. 21 (1993) 143–153. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
 L. Sirovich, Turbulence and the dynamics of coherent structures, part 1: Coherent structures. Quart. Appl. Math. 45 (1987) 561–571. [MathSciNet]
 S. Sugata, Reduced Basis Approximation and A Posteriori Error Estimation for ManyParameter Problems. Ph.D. thesis, Massachusetts Institute of Technology (2007) (in preparation).
 K. Veroy and A.T. Patera, Certified realtime solution of the parametrized steady incompressible Navierstokes equations; Rigorous reducedbasis a posteriori error bounds. Internat. J. Numer. Meth. Fluids 47 (2005) 773–788.
 K. Veroy, D. Rovas and A.T. Patera, A posteriori error estimation for reducedbasis approximation of parametrized elliptic coercive partial differential equations: “Convex inverse" bound conditioners. ESAIM: COCV 8 (2002) 1007–1028. Special Volume: A tribute to J.L. Lions. [CrossRef] [EDP Sciences]
 K. Veroy, C. Prud'homme, D.V. Rovas and A.T. Patera, A posteriori error bounds for reducedbasis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations (AIAA Paper 20033847), in Proceedings of the 16th AIAA Computational Fluid Dynamics Conference (2003).
 D.S. Weile, E. Michielssen and K. Gallivan, Reducedorder modeling of multiscreen frequencyselective surfaces using Krylovbased rational interpolation. IEEE Trans. Antennas Propag. 49 (2001) 801–813. [CrossRef]
Free access
Issue 
ESAIM: M2AN
Volume 41, Number 3, MayJune 2007



Page(s)  575  605  
DOI  http://dx.doi.org/10.1051/m2an:2007031  
Published online  02 August 2007 