Free access
Issue
ESAIM: M2AN
Volume 41, Number 4, July-August 2007
Page(s) 679 - 712
DOI http://dx.doi.org/10.1051/m2an:2007037
Published online 04 October 2007
  1. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer-Verlag, Berlin-Heidelberg- New York (2002).
  2. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin-Heidelberg-New York (1991).
  3. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications 4. North Holland, Amsterdam (1978).
  4. S. Flügge, Handbuch der physik, Elastizität und plastizität. Springer-Verlag (1958).
  5. B.X. Fraeijs de Veubeke, Displacement and equilibrium models in the finite element method, in Stress Analysis, O.C. Zienkiewicz and G. Holister Eds., John Wiley, New York (1965).
  6. B.X. Fraeijs de Veubeke, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–354. [MathSciNet]
  7. A.J.H. Frijns, A four-component mixture theory applied to cartilaginous tissues. Ph.D. thesis, Eindhoven University of Technology (2001).
  8. J.M. Huyghe and J.D. Janssen, Quadriphasic mechanics of swelling incompressibleporous media. Int. J. Engng. Sci. 35 (1997) 793–802. [CrossRef]
  9. E.F. Kaasschieter and A.J.M. Huijben, Mixed-hybrid finite elements and streamline computation for the potential flow problem. Numer. Methods Partial Differ. Equat. 8 (1992) 221–266. [CrossRef]
  10. K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, An analytical solution of incompressible charged porous media. Z. Angew. Math. Mech. 86 (2006) 667-681. [CrossRef] [MathSciNet]
  11. K. Malakpoor, E.F. Kaasschieter and J.M. Huyghe, Mathematical modelling and numerical solution of swelling of cartilaginous tissues. Part I: Modeling of incompressible charged porous media. ESAIM: M2AN 41 (2007) 661–678. [CrossRef] [EDP Sciences]
  12. J.C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315. [CrossRef] [MathSciNet]
  13. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1980) 57.
  14. P.A. Raviart and J.M. Thomas, A mixed finite element method for 2nd-order elliptic problems, in Mathematical Aspects of Finite Element Methods, Lecture Note in Mathematics 606, I. Galligani and E. Magenes Eds., Springer, Berlin (1997) 292–315.
  15. J.E. Roberts and J.M. Thomas, Mixed and hybrid finite element methods, in Handbook of Numerical Analysis, Volume II: Finite Element Methods, P.G. Ciarlet and J.L. Lions Eds., North Holland, Amsterdam (1991) 523–639.
  16. J.M. Thomas, Sur l'analyse numérique des méthodes d'éléments finis hybrides et mixtes. Ph.D. thesis, University Pierre et Marie Curie, Paris (1977).
  17. R. van Loon, J.M. Huyghe, M.W. Wijlaars and F.P.T. Baaijens, 3D FE implementation of an incompressible quadriphasic mixture model. Inter. J. Numer. Meth. Eng. 57 (2003) 1243–1258. [CrossRef]

Recommended for you