Free access
Issue
ESAIM: M2AN
Volume 41, Number 4, July-August 2007
Page(s) 771 - 799
DOI http://dx.doi.org/10.1051/m2an:2007041
Published online 04 October 2007
  1. S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser. Savoirs Actuels, InterEditions, Paris, Editions du Centre National de la Recherche Scientifique (CNRS), Meudon (1991) p. 190.
  2. B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics. Technical report (http://fr.arxiv.org/abs/math/0702015v1), Université Bordeaux I, IMB (2007).
  3. B. Alvarez-Samaniego and D. Lannes, A Nash-Moser theorem for singular evolution equations. Application to the Serre and Green-Naghdi equations. Preprint (http://arxiv.org/abs/math.AP/0701681v1), Indiana University Mathematical Journal (2007) (to appear).
  4. T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems. Philos. Trans. Roy. Soc. London Ser. A 272 (1972) 47–78. [CrossRef] [MathSciNet]
  5. J.L. Bona and M. Chen, A Boussinesq system for two-way propagation of nonlinear dispersive waves. Physica D 116 (2004) 191–224. [CrossRef] [MathSciNet]
  6. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. I: Derivation and linear theory. J. Nonlinear Sci. 12 (2002) 283–318. [CrossRef] [MathSciNet]
  7. J.L. Bona, M. Chen and J.-C. Saut, Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. II: Nonlinear theory. Nonlinearity 17 (2004) 925–952. [CrossRef] [MathSciNet]
  8. J.L. Bona, T. Colin and D. Lannes, Long waves approximations for water waves. Arch. Rational Mech. Anal. 178 (2005) 373–410. [CrossRef] [MathSciNet]
  9. M.J. Boussinesq, Théorie de l'intumescence liquide appelée onde solitaire ou de translation se propageant dans un canal rectangulaire. C.R. Acad. Sci. Paris Sér. A-B 72 (1871) 755–759.
  10. M. Chen, Equations for bi-directional waves over an uneven bottom. Math. Comput. Simulation 62 (2003) 3–9. [CrossRef] [MathSciNet]
  11. W. Craig, An existence theory for water waves and the Boussinesq and Korteweg-de Vries scaling limits. Comm. Partial Differential Equations 10 (1985) 787–1003. [CrossRef] [MathSciNet]
  12. M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part I: Linear Wave Propagation. Adanced Series on Ocean Engineering 13. World Scientific (1997).
  13. M.W. Dingemans, Water Wave Propagation over uneven bottoms. Part II: Non-linear Wave Propagation. Adanced Series on Ocean Engineering 13. World Scientific (1997).
  14. A.E. Green and P.M. Naghdi, A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech. 78 (1976) 237–246. [CrossRef]
  15. T. Iguchi, A long wave approximation for capillary-gravity waves and an effect of the bottom. Preprint (2005).
  16. T. Iguchi, A mathematical justification of the forced Korteweg-de Vries equation for capillary-gravity waves. Kyushu J. Math. 60 (2006) 267–303. [CrossRef] [MathSciNet]
  17. J.T. Kirby, Gravity Waves in Water of Finite Depth, Advances in Fluid Mechanics 10, in J.N. Hunt Ed., Computational Mechanics Publications (1997) 55–125.
  18. D. Lannes, Sur le caractère bien posé des équations d'Euler avec surface libre. Séminaire EDP de l'École Polytechnique (2004), Exposé no. XIV.
  19. D. Lannes, Well-posedness of the water-waves equations. J. Amer. Math. Soc. 18 (2005) 605–654. [CrossRef] [MathSciNet]
  20. D. Lannes and J.C. Saut, Weakly transverse Boussinesq systems and the Kadomtsev–Petviashvili approximation. Nonlinearity 19 (2006) 2853–2875. [CrossRef] [MathSciNet]
  21. P.A. Madsen, R. Murray and O.R. Sorensen, A new form of the Boussinesq equations with improved linear dispersion characteristics (Part 1). Coastal Eng. 15 (1991) 371–388. [CrossRef]
  22. G. Métivier, Small Viscosity and Boundary Layer Methods: Theory, Stability Analysis, and Applications. Modeling and Simulation in Science, Engineering and Technology, Birkhäuser, Boston-Basel-Berlin (2004).
  23. D.P. Nicholls and F. Reitich, A new approach to analyticity of Dirichlet-Neumann operators. Proc. Royal Soc. Edinburgh Sect. A 131 (2001) 1411–1433. [CrossRef]
  24. V.I. Nalimov, The Cauchy-Poisson problem. (Russian) Dinamika Splošn. Sredy Vyp. 18, Dinamika Zidkost. so Svobod. Granicami 254 (1974) 104–210.
  25. O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coastal Eng. ASCE 119 (1993) 618–638. [CrossRef]
  26. D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815–827. [CrossRef]
  27. G. Schneider and C.E. Wayne, The long-wave limit for the water-wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math. 162 (2002) 247–285.
  28. G. Wei and J.T. Kirby, A time-dependent numerical code for extended Boussinesq equations. J. Waterw. Port Coastal Ocean Engineering 120 (1995) 251–261. [CrossRef]
  29. G. Wei, J.T. Kirby, S.T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves. I. Highly nonlinear, unsteady waves. J. Fluid Mechanics 294 (1995) 71–92. [CrossRef]
  30. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math. 130 (1997) 39–72. [CrossRef] [MathSciNet]
  31. S. Wu, Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc. 12 (1999) 445–495. [CrossRef] [MathSciNet]
  32. H. Yosihara, Gravity waves on the free surface of an incompressible perfect fluid of finite depth. Publ. Res. Inst. Math. Sci. 18 (1982) 49–96. [CrossRef] [MathSciNet]

Recommended for you