Free access
Issue
ESAIM: M2AN
Volume 41, Number 5, September-October 2007
Page(s) 855 - 874
DOI http://dx.doi.org/10.1051/m2an:2007034
Published online 23 October 2007
  1. M. Bercovier and O. Pironneau, Error estimates for finite element method solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211–224. [CrossRef] [MathSciNet]
  2. D. Braess and R. Sarazin, An efficient smoother for the Stokes problem. Appl. Numer. Math. 23 (1997) 3–19. [CrossRef] [MathSciNet]
  3. J.H. Bramble and S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124. [CrossRef] [MathSciNet]
  4. Z. Cai, J. Douglas, Jr. and X. Ye, A stable nonconforming quadrilateral finite element method for the stationary Stokes and Navier-Stokes equations. Calcolo 36 (1999) 215–232. [CrossRef] [MathSciNet]
  5. Z. Cai, J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming quadrilateral finite elements: a correction. Calcolo 37 (2000) 253–254. [CrossRef] [MathSciNet]
  6. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. RAIRO. Anal. Numér. 7 (1973) 33–76.
  7. J. Douglas, Jr., J.E. Santos, D. Sheen and X. Ye, Nonconforming Galerkin methods based on quadrilateral elements for second order elliptic problems. ESAIM: M2AN 33 (1999) 747–770. [CrossRef] [EDP Sciences]
  8. M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO Anal. Numér. 11 (1977) 341–354. [MathSciNet]
  9. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986).
  10. H.D. Han, Nonconforming elements in the mixed finite element method. J. Comput. Math. 2 (1984) 223–233. [MathSciNet]
  11. J.P. Hennart, J. Jaffré and J.E. Roberts, A constructive method for deriving finite elements of nodal type. Numer. Math. 53 (1988) 701–738. [CrossRef] [MathSciNet]
  12. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical Results for a Class of LES Models . Lecture Notes in Computational Science and Engineering 34, Springer-Verlag, Berlin, Heidelberg, New York (2003).
  13. V. John and G. Matthies, Higher-order finite element discretizations in a benchmark problem for incompressible flows. Int. J. Num. Meth. Fluids 37 (2001) 885–903. [CrossRef]
  14. V. John and G. Matthies, MooNMD—a program package based on mapped finite element methods. Comput. Vis. Sci. 6 (2004) 163–169. [MathSciNet]
  15. V. John, P. Knobloch, G. Matthies and L. Tobiska, Non-nested multi-level solvers for finite element discretisations of mixed problems. Computing 68 (2002) 313–341. [CrossRef] [MathSciNet]
  16. G. Matthies and L. Tobiska, The inf-sup condition for the mapped Formula element in arbitrary space dimensions. Computing 69 (2002) 119–139. [CrossRef] [MathSciNet]
  17. G. Matthies and L. Tobiska, Inf-sup stable non-conforming finite elements of arbitrary order on triangles. Numer. Math. 102 (2005) 293–309. [CrossRef] [MathSciNet]
  18. J. Maubach and P. Rabier, Nonconforming finite elements of arbitrary degree over triangles. RANA report 0328, Technical University of Eindhoven (2003).
  19. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Meth. Part. Diff. Equ. 8 (1992) 97–111. [CrossRef] [MathSciNet]
  20. F. Schieweck, A general transfer operator for arbitrary finite element spaces. Preprint 00-25, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg (2000).
  21. S. Vanka, Block-implicit multigrid calculation of two-dimensional recirculating flows. Comp. Meth. Appl. Mech. Engrg. 59 (1986) 29–48. [CrossRef]
  22. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175–182. [MathSciNet]

Recommended for you