Free access
Issue
ESAIM: M2AN
Volume 42, Number 1, January-February 2008
Page(s) 141 - 174
DOI http://dx.doi.org/10.1051/m2an:2007056
Published online 12 January 2008
  1. H. Abboud, V. Girault and T. Sayah, Two-grid finite element scheme for the fully discrete time-dependent Navier-Stokes problem. C. R. Acad. Sci. Paris, Ser. I 341 (2005).
  2. H. Abboud, V. Girault and T. Sayah, Second-order two-grid finite element scheme for the fully discrete transient Navier-Stokes equations. Preprint, http://www.ann.jussieu.fr/publications/2007/R07040.html.
  3. R.-A. Adams, Sobolev Spaces. Academic Press, New York (1975).
  4. D. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337–344. [CrossRef] [MathSciNet]
  5. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam, New York, Oxford (1978).
  6. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57.
  7. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the transient Navier-Stokes equations. ESAIM: M2AN 35 (2001) 945–980. [CrossRef] [EDP Sciences]
  8. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations. Theory and Algorithms, in Springer Series in Computational Mathematics 5, Springer-Verlag, Berlin (1986).
  9. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman Monographs and Studies in Mathematics 24. Pitman, Boston, (1985).
  10. F. Hecht and O. Pironneau, FreeFem++. See: http://www.freefem.org.
  11. O.A. Ladyzenskaya, The Mathematical Theory of Viscous Incompressible Flow. (In Russian, 1961), First English translation, Gordon & Breach, New York (1963).
  12. W. Layton, A two-level discretization method for the Navier-Stokes equations. Computers Math. Applic. 26 (1993) 33–38. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  13. W. Layton and W. Lenferink, Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number. Applied Math. Comput. 69 (1995) 263–274. [CrossRef] [MathSciNet]
  14. J.-L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
  15. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications I. Dunod, Paris (1968).
  16. J. Nečas, Les méthodes directes en théorie des équations elliptiques. Masson, Paris (1967).
  17. R. Temam, Une méthode d'approximation de la solution des équations de Navier-Stokes. Bull. Soc. Math. France 98 (1968) 115–152.
  18. M.F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations. SIAM. J. Numer. Anal. 10 (1973) 723–759. [CrossRef] [MathSciNet]
  19. J. Xu, Some Two-Grid Finite Element Methods. Tech. Report, P.S.U. (1992).
  20. J. Xu, A novel two-grid method of semilinear elliptic equations. SIAM J. Sci. Comput. 15 (1994) 231–237. [CrossRef] [MathSciNet]
  21. J. Xu, Two-grid finite element discretization techniques for linear and nonlinear PDE. SIAM J. Numer. Anal. 33 (1996) 1759–1777. [CrossRef] [MathSciNet]

Recommended for you