 B.O. Almroth, P. Stern and F.A. Brogan, Automatic choice of global shape functions in structural analysis. AIAA J. 16 (1978) 525–528. [CrossRef]
 D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet]
 C. Bardos, A.Y. Leroux and J.C. Nedelec, First order quasilinear equations with boundary conditions. Comm. Partial Diff. Eq. 4 (1979) 1017–1034. [CrossRef] [MathSciNet]
 M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An `empirical interpolation' method: application to efficient reducedbasis discretization of partial differential equations. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 667–672.
 T. Barth and M. Ohlberger, Finite volume methods: Foundation and analysis, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004).
 J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. [CrossRef] [MathSciNet]
 B. Cockburn, Discontinuous Galerkin methods for computational fluid dynamics, in Encyclopedia of Computational Mechanics, E. Stein, R. de Borst and T.J.R. Hughes Eds., John Wiley & Sons (2004).
 B. Cockburn and C.W. Shu, RungeKutta discontinuous Galerkin methods for convectiondominated problems. J. Sci. Comput. 16 (2001) 173–261. [CrossRef] [MathSciNet]
 Y. Coudiere, J.P. Vila and P. Villedieu, Convergence rate of a finite volume scheme for a two dimensional convectiondiffusion problem. ESAIM: M2AN 33 (1999) 493–516. [CrossRef] [EDP Sciences] [MathSciNet]
 R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, volume VII, NorthHolland, Amsterdam (2000) 713–1020.
 R. Eymard, T. Gallouët, R. Herbin and A. Michel, Convergence of a finite volume scheme for nonlinear degenerate parabolic equations. Numer. Math. 92 (2002) 41–82. [CrossRef] [MathSciNet]
 R. Eymard, T. Gallouët and R. Herbin, A cellcentred finite volume approximation for anisotropic diffusion operators on unstructured meshes in any space dimension. IMA J. Numer. Anal. 26 (2006) 326–353. [CrossRef] [MathSciNet]
 E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer (1996).
 M.A. Grepl, Reducedbasis Approximations and a Posteriori Error Estimation for Parabolic Partial Differential Equations. Ph.D. thesis, Massachusetts Institute of Technology, USA (2005).
 M.A. Grepl and A.T. Patera, A posteriori error bounds for reducedbasis approximations of parametrized parabolic partial differential equations. ESAIM: M2AN 39 (2005) 157–181. [CrossRef] [EDP Sciences]
 P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées 22 [Research in Applied Mathematics]. Masson, Paris (1992).
 R. Herbin and M. Ohlberger, A posteriori error estimate for finite volume approximations of convection diffusion problems, in Proc. 3rd Int. Symp. on Finite Volumes for Complex Applications  Problems and Perspectives (2002) 753–760.
 R.L. Higdon, Initialboundary value problems for linear hyperbolic systems. SIAM Rev. 28 (1986) 177–217. [CrossRef] [MathSciNet]
 M.J. Jasor and L. Lévi, Singular perturbations for a class of degenerate parabolic equations with mixed DirichletNeumann boundary conditions. Ann. Math. Blaise Pascal 10 (2003) 269–296. [MathSciNet]
 D. Kröner, Numerical Schemes for Conservation Laws. John Wiley & Sons and Teubner (1997).
 R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press (2002).
 L. Machiels, Y. Maday, I.B. Oliveira, A. Patera and D.V. Rovas, Output bounds for reducedbasis approximations of symmetric positive definite eigenvalue problems. C. R. Acad. Sci. Paris Ser. I Math. 331 (2000) 153–158. [CrossRef] [MathSciNet]
 M. Mangold and M. Sheng, Nonlinear model reduction of a 2D MCFC model with internal reforming. Fuel Cells 4 (2004) 68–77. [CrossRef]
 B.C. Moore, Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Automat. Control AC26 (1981) 17–32.
 N.C. Nguyen, K. Veroy and A.T. Patera, Certified realtime solution of parametrized partial differential equations, in Handbook of Materials Modeling, S. Yip Ed., Springer (2005) 1523–1558.
 A.K. Noor and J.M. Peters, Reduced basis technique for nonlinear analysis of structures. AIAA J. 18 (1980) 455–462. [CrossRef]
 M. Ohlberger, A posteriori error estimates for vertex centered finite volume approximations of convectiondiffusionreaction equations. ESAIM: M2AN 35 (2001) 355–387. [CrossRef] [EDP Sciences] [MathSciNet]
 M. Ohlberger, A posteriori error estimate for finite volume approximations to singularly perturbed nonlinear convectiondiffusion equations. Numer. Math. 87 (2001) 737–761. [CrossRef] [MathSciNet]
 M. Ohlberger and J. Vovelle, Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method. Math. Comp. 75 (2006) 113–150. [CrossRef] [MathSciNet]
 A.T. Patera and G. Rozza, Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Partial Differential Equations. Version 1.0, Copyright MIT 2006, to appear in (tentative rubric) MIT Pappalardo Graduate Monographs in Mechanical Engineering.
 T.A. Porsching and M.L. Lee, The reduced basis method for initial value problems. SIAM J. Numer. Anal. 24 (1987) 1277–1287. [CrossRef] [MathSciNet]
 C. Prud'homme, D. Rovas, K. Veroy and A.T. Patera, A mathematical and computational framework for reliable realtime solution of parametrized partial differential equations. ESAIM: M2AN 36 (2002) 747–771. [CrossRef] [EDP Sciences]
 C. Prud'homme, D.V. Rovas, K. Veroy, L. Machiels, Y. Maday, A.T. Patera and G. Turinici, Reliable realtime solution of parametrized partial differential equations: Reducedbasis output bound methods. J. Fluids Engineering 124 (2002) 70–80. [CrossRef]
 A. Quarteroni, G. Rozza, L. Dede and A. Quaini, Numerical approximation of a control problem for advectiondiffusion processes, in System Modeling and Optimization, Proceedings of 22nd IFIP TC7 Conference (2006).
 D.V. Rovas, L. Machiels and Y. Maday, Reduced basis output bound methods for parabolic problems. IMA J. Numer. Anal. 26 (2006) 423–445. [CrossRef] [MathSciNet]
 C.W. Rowley, Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurcat. Chaos 15 (2005) 997–1013. [CrossRef]
 G. Rozza, Shape design by optimal flow control and reduced basis techniques: Applications to bypass configurations in haemodynamics. Ph.D. thesis, École Polytechnique Fédérale de Lausanne, Switzerland (2005).
 B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. MIT Press (2002).
 T. Tonn and K. Urban, A reducedbasis method for solving parameterdependent convectiondiffusion problems around rigid bodies. Technical Report 200603, Institute for Numerical Mathematics, Ulm University, ECCOMAS CFD (2006).
 K. Veroy and A.T. Patera, Certified realtime solution of the parametrized steady incompressible NavierStokes equations: Rigorous reducedbasis a posteriori error bounds. Int. J. Numer. Meth. Fluids 47 (2005) 773–788. [CrossRef]
 K. Veroy, C. Prud'homme and A.T. Patera, Reducedbasis approximation of the viscous Burgers equation: rigorous a posteriori error bounds. C. R. Acad. Sci. Paris Ser. I Math. 337 (2003) 619–624.
Free access
Issue 
ESAIM: M2AN
Volume 42, Number 2, MarchApril 2008



Page(s)  277  302  
DOI  http://dx.doi.org/10.1051/m2an:2008001  
Published online  27 March 2008 