Free access
Issue
ESAIM: M2AN
Volume 42, Number 2, March-April 2008
Page(s) 243 - 262
DOI http://dx.doi.org/10.1051/m2an:2008003
Published online 27 March 2008
  1. P. Alart, M. Barboteu, P. Le Tallec and M. Vidrascu, Méthode de Schwarz additive avec solveur grossier pour problèmes non symétriques. C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 399–404.
  2. L. Baillet and T. Sassi, Simulations numériques de différentes méthodes d'éléments finis pour les problèmes contact avec frottement. C. R. Acad. Sci. Paris Sér. II B 331 (2003) 789–796.
  3. L. Baillet and T. Sassi, Mixed finite element method for the Signorini problem with friction. Numer. Methods Partial Differential Equations 22 (2006) 1489–1508. [CrossRef] [MathSciNet]
  4. G. Bayada, J. Sabil and T. Sassi, Algorithme de Neumann-Dirichlet pour des problèmes de contact unilatéral: résultat de convergence. C. R. Math. Acad. Sci. Paris 335 (2002) 381–386. [CrossRef] [MathSciNet]
  5. A.B. Chandhary and K.J. Bathe, A solution method for static and dynamic analysis of three-dimensional contact problems with friction. Comput. Struc. 24 (1986) 855–873. [CrossRef]
  6. P.W. Christensen, A. Klarbring, J.S. Pang and N. Strömberg, Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg. 42 (1998) 145–173. [CrossRef] [MathSciNet]
  7. G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique, Travaux et Recherches Mathématiques 21. Dunod, Paris (1972).
  8. C. Eck and B. Wohlmuth, Convergence of a contact-Neumann iteration for the solution of two-body contact problems. Math. Models Methods Appl. Sci. 13 (2003) 1103–1118. [CrossRef] [MathSciNet]
  9. C. Farhat and F.X. Roux, Implicit parallel processing in structural mechanics. Computational Mechanics Advances 1 (1994) 1–124.
  10. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical analysis of variational inequalities, Studies in Mathematics and its Applications 8. North-Holland Publishing Co., Amsterdam (1981). Translated from the French.
  11. J. Haslinger, Z. Dostál and R. Kučera, On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg. 191 (2002) 2261–2281. [CrossRef] [MathSciNet]
  12. N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988).
  13. R. Kornhuber and R. Krause, Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci. 4 (2001) 9–20. [CrossRef] [MathSciNet]
  14. R.H. Krause, Monotone multigrid methods for Signorini's problem with friction. Ph.D. thesis, University of Berlin, Germany (2001).
  15. R.H. Krause and B.I. Wohlmuth, Nonconforming domain decomposition techniques for linear elasticity. East-West J. Numer. Math. 8 (2000) 177–206. [MathSciNet]
  16. R.H. Krause and B.I. Wohlmuth, A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5 (2002) 139–148. [CrossRef] [MathSciNet]
  17. P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220. [MathSciNet]
  18. L. Lusternik and V. Sobolev, Précis d'analyse fonctionnelle. MIR, Moscow (1989).
  19. B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition, Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, Cambridge (1996).
  20. G. Zavarise and P. Wriggers, A superlinear convergent augmented Lagrangian procedure for contact problems. Engrg. Comput. 16 (1999) 88–119. [CrossRef]

Recommended for you