Free access
Issue
ESAIM: M2AN
Volume 42, Number 2, March-April 2008
Page(s) 223 - 241
DOI http://dx.doi.org/10.1051/m2an:2008006
Published online 27 March 2008
  1. R.J. Di Perna and P.L. Lions, Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math. 3 (1995) 511–547.
  2. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. CRC Press (1992).
  3. E. Hairer, Important aspects of geometric numerical integration. J. Sci. Comput. 25 (2005) 67–81. [CrossRef] [MathSciNet]
  4. E. Hairer, C. Lubich and G. Wanner, Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics 31. Springer, Berlin (2002).
  5. M. Hochbruck and C. Lubich, A Gautschi-type method for oscillatory second-order differential equations. Numer. Math. 83 (1999) 403–426. [CrossRef] [MathSciNet]
  6. A. Kvaerno and B. Leimkuhler, A time-reversible, regularized, switching integrator for the n-body problem. SIAM J. Sci. Comput. 22 (2000) 1016–1035. [CrossRef] [MathSciNet]
  7. B. Laird and B. Leimkuhler, A molecular dynamics algorithm for mixed hard-core/continuous potentials. Mol. Phys. 98 (2000) 309–316.
  8. C. Le Bris and P.L. Lions, Renormalized solutions of some transport equations with partially w1,1 velocities and applications. Ann. Mat. Pura Appl. 1 (2004) 97–130. [CrossRef] [MathSciNet]
  9. R.I. McLachlan and G.R.W. Quispel, Geometric integration of conservative polynomial ODEs. Appl. Numer. Math. 45 (2003) 411–418. [CrossRef] [MathSciNet]

Recommended for you