Free access
Volume 42, Number 2, March-April 2008
Page(s) 263 - 275
DOI http://dx.doi.org/10.1051/m2an:2008007
Published online 27 March 2008
  1. W. Braun and K. Hepp, The Vlasov dynamics and its fluctuations in the Formula limit of interacting classical particles. Comm. Math. Phys. 56 (1977) 101–113. [CrossRef] [MathSciNet]
  2. P. Buttà, E. Caglioti and C. Marchioro, On the long time behavior of infinitely extended systems of particles interacting via Kac Potentials. J. Stat. Phys. 108 (2002) 317–339. [CrossRef]
  3. S. Caprino, C. Marchioro and M. Pulvirenti, Approach to equilibrium in a microscopic model of friction. Comm. Math. Phys. 264 (2006) 167–189. [CrossRef] [MathSciNet]
  4. S. Caprino, G. Cavallaro and C. Marchioro, On a microscopic model of viscous friction. Math. Models Methods Appl. Sci. 17 (2007) 1369–1403. [CrossRef] [MathSciNet]
  5. G. Cavallaro, On the motion of a convex body interacting with a perfect gas in the mean-field approximation. Rend. Mat. Appl. 27 (2007) 123–145. [MathSciNet]
  6. R.L. Dobrushin, Vlasov equations. Sov. J. Funct. Anal. 13 (1979) 115–123. [CrossRef]
  7. C. Gruber and J. Piasecki, Stationary motion of the adiabatic piston. Physica A 268 (1999) 412–423. [CrossRef]
  8. J.L. Lebowitz, J. Piasecki and Y. Sinai, Scaling dynamics of a massive piston in a ideal gas, in Hard Ball Systems and the Lorentz Gas, Encycl. Math. Sci. 101, Springer, Berlin (2000) 217–227.
  9. H. Neunzert, An Introduction to the Nonlinear Boltzmann-Vlasov Equation, in Kinetic Theories and the Boltzmann Equation, Montecatini (1981), Lecture Notes in Math. 1048, Springer, Berlin (1984) 60–110.
  10. H. Spohn, On the Vlasov hierarchy. Math. Meth. Appl. Sci. 3 (1981) 445–455. [CrossRef]

Recommended for you