Free access
Issue
ESAIM: M2AN
Volume 42, Number 3, May-June 2008
Page(s) 411 - 424
DOI http://dx.doi.org/10.1051/m2an:2008008
Published online 03 April 2008
  1. M. Bercovier and O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables. Numer. Math. 33 (1979) 211–224. [CrossRef] [MathSciNet]
  2. D. Boffi, Stability of higher-order triangular Hood-Taylor methods for the stationary Stokes equation. Math. Models Methods Appl. Sci. 4 (1994) 223–235. [CrossRef] [MathSciNet]
  3. D. Boffi, Three-dimensional finite element methods for the Stokes problem. SIAM J. Numer. Anal. 34 (1997) 664–670. [CrossRef] [MathSciNet]
  4. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581–590. [CrossRef] [MathSciNet]
  5. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991).
  6. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations: theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986).
  7. L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111–143. [MathSciNet]
  8. R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comp. 54 (1990) 494–548.
  9. R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO Anal. Numér. 18 (1984) 175–182. [MathSciNet]

Recommended for you