Free access
Issue
ESAIM: M2AN
Volume 42, Number 3, May-June 2008
Page(s) 493 - 505
DOI http://dx.doi.org/10.1051/m2an:2008014
Published online 03 April 2008
  1. M. Ainsworth and P. Coggins, A uniformly stable family of mixed hp-finite elements with continuous pressures for incompressible flow. IMA J. Numer. Anal. 22 (2002) 307–327. [CrossRef] [MathSciNet]
  2. D.N. Arnold, D. Boffi and R.S. Falk, Approximation by quadrilateral finite elements. Math. Comput. 71 (2002) 909–922. [CrossRef] [MathSciNet]
  3. I. Babuška and A. Miller, A feedback finite element method with a posteriori error estimation. I. The finite element method and some basic properties of the a posteriori error estimator. Comput. Methods Appl. Mech. Engrg. 61 (1987) 1–40. [CrossRef] [MathSciNet]
  4. C. Bernardi and Y. Maday, Uniform inf-sup conditions for the spectral discretization of the Stokes problem. Math. Models Methods Appl. Sci. 9 (1999) 395–414. [CrossRef] [MathSciNet]
  5. D. Boffi and L. Gastaldi, On the quadrilateral Q2-P1 element for the Stokes problem. Int. J. Numer. Methods Fluids 39 (2002) 1001–1011. [CrossRef]
  6. J.M. Boland and R.A. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. [CrossRef] [MathSciNet]
  7. S. Bönisch, V. Heuveline and P. Wittwer, Adaptive boundary conditions for exterior flow problems. J. Math. Fluid Mech. 7 (2005) 85–107. [CrossRef] [MathSciNet]
  8. F. Brezzi and R.S. Falk, Stability of higher-order Hood-Taylor methods. SIAM J. Numer. Anal. 28 (1991) 581–590. [CrossRef] [MathSciNet]
  9. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag (1991).
  10. L. Chilton and M. Suri, On the construction of stable curvilinear p version elements for mixed formulations of elasticity and Stokes flow. Numer. Math. 86 (2000) 29–48. [CrossRef] [MathSciNet]
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin-Heidelberg-New York (1986).
  12. V. Heuveline and M. Hinze, Adjoint-based adaptive time-stepping for partial differential equations using proper orthogonal decomposition. Technical report, University Heidelberg, Germany, SFB 359 (2004).
  13. V. Heuveline and R. Rannacher, A posteriori error control for finite element approximations of elliptic eigenvalue problems. Adv. Comput. Math. 15 (2001) 107–138. [CrossRef] [MathSciNet]
  14. V. Heuveline and R. Rannacher, Duality-based adaptivity in the hp-finite element method. J. Numer. Math. 11 (2003) 95–113. [CrossRef] [MathSciNet]
  15. V. Heuveline and F. Schieweck, H1-interpolation on quadrilateral and hexahedral meshes with hanging nodes. Computing 80 (2007) 203–220. [CrossRef] [MathSciNet]
  16. V. Heuveline and F. Schieweck, On the inf-sup condition for higher order mixed fem on meshes with hanging nodes. ESAIM: M2AN 41 (2007) 1–20. [CrossRef] [EDP Sciences]
  17. G. Matthies, Mapped finite elements on hexahedra. Necessary and sufficient conditions for optimal interpolation errors. Numer. Algorithms 27 (2001) 317–327. [CrossRef] [MathSciNet]
  18. G. Matthies, Finite element methods for free boundary value problems with capillary surfaces. Ph.D. thesis, Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg, Germany (2002). [Published at Shaker-Verlag Aachen].
  19. G. Matthies and F. Schieweck, On the reference mapping for quadrilateral and hexahedral finite elements on multilevel adaptive grids. Computing 80 (2007) 95–119. [CrossRef] [MathSciNet]
  20. G. Matthies and L. Tobiska, The inf-sup condition for the mapped Qk-Formula element in arbitrary space dimensions. Computing 69 (2002) 119–139. [CrossRef] [MathSciNet]
  21. S. Schötzau, C. Schwab and R. Stenberg, Mixed hp-fem on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes. Numer. Math. 83 (1999) 667–697. [MathSciNet]
  22. C. Schwab, p- and hp-Finite Element Methods, Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Oxford Science Publications, Clarendon Press (1998).
  23. R. Stenberg, Error analysis of some finite element methods for the Stokes problem. Math. Comput. 54 (1990) 495–508. [CrossRef] [MathSciNet]
  24. R. Stenberg and M. Suri, Mixed hp finite element methods for problems in elasticity and Stokes flow. Numer. Math. 72 (1996) 367–389. [CrossRef] [MathSciNet]
  25. A. Toselli and C. Schwab, Mixed hp-finite element approximations on geometric edge and boundary layer meshes in three dimensions. Numer. Math. 94 (2003) 771–801. [MathSciNet]

Recommended for you