Free access
Issue
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
Page(s) 609 - 644
DOI http://dx.doi.org/10.1051/m2an:2008020
Published online 05 June 2008
  1. Y. Achdou and J.-L. Guermond, Convergence analysis of a finite element projection/Lagrange-Galerkin method for the incompressible Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 799–826. [CrossRef] [MathSciNet]
  2. V.I. Arnold, Ordinary Differential Equations. Springer-Verlag, Berlin, Germany (1992).
  3. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15. Springer-Verlag, New York, USA (1994).
  4. P.G. Ciarlet, Mathematical Elasticity, Vol. I: Three-Dimensional Elasticity, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam, Netherlands (1988).
  5. P.G. Ciarlet and P.-A. Raviart, Interpolation theory over curved elements, with applications to finite element methods. Comput. Methods Appl. Mech. Engrg. 1 (1972) 217–249. [CrossRef] [MathSciNet]
  6. J. Donea, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Engrg. 33 (1982) 689–723. [CrossRef]
  7. F. Duarte, R. Gormaz and S. Natesan, Arbitrary Lagrangian-Eulerian method for Navier-Stokes equations with moving boundaries. Comput. Methods Appl. Mech. Engrg. 193 (2004) 4819–4836. [CrossRef] [MathSciNet]
  8. C. Farhat, M. Lesoinne and N. Maman, Mixed explicit/implicit time integration of coupled aeroelastic problems: three-field formulation, geometric conservation and distributed solution. Internat. J. Numer. Methods Fluids 21 (1995) 807–835 [CrossRef] [MathSciNet]
  9. M.A. Fernández, J.-F. Gerbeau and C. Grandmont, A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Internat. J. Numer. Methods Engrg. 69 (2007) 794–821. [CrossRef] [MathSciNet]
  10. L. Formaggia and F. Nobile, A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999) 105–132. [MathSciNet]
  11. L. Gastaldi, A priori error estimates for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 9 (2001) 123–156. [MathSciNet]
  12. V. Girault, H. López and B. Maury, One time-step finite element discretization of the equation of motion of two fluid flows. Numer. Methods Partial Differ. Equ. 22 (2005) 680–707. [CrossRef]
  13. R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Periaux, A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow. Comput. Methods Appl. Mech. Engrg. 184 (2000) 241–267. [CrossRef] [MathSciNet]
  14. C. Grandmont and Y. Maday, Fluid-structure interaction: a theoretical point of view, in Fluid-structure interaction, Innov. Tech. Ser., Kogan Page Sci., London (2003) 1–22.
  15. C. Grandmont, V. Guimet and Y. Maday, Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction. Math. Models Methods Appl. Sci. 11 (2001) 1349–1377. [CrossRef] [MathSciNet]
  16. P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics 24. Pitman (Advanced Publishing Program), Boston, USA (1985).
  17. H.H. Hu, Direct simulation of flows of solid-liquid mixtures. Int. J. Multiphase Flow 22 (1996) 335–352. [CrossRef]
  18. T.J.R. Hughes, W.K. Liu and T.K. Zimmermann, Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Engrg. 29 (1981) 329–349. [CrossRef] [MathSciNet]
  19. I. Inoue and M. Wakimoto, On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 303–319. [MathSciNet]
  20. J. Janela, A. Lefebvre and B. Maury, A penalty method for the simulation of fluid-rigid body interaction. ESAIM: Proc. 14 (2005) 115–123.
  21. M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Numer. Anal. 23 (1986) 562–580. [CrossRef] [MathSciNet]
  22. B. Maury, Characteristics ALE method for the unsteady 3D Navier-Stokes equations with a free surface. Int. J. Comput. Fluid Dyn. 6 (1996) 175–188. [CrossRef]
  23. B. Maury, Direct simulations of 2D fluid-particle flows in biperiodic domains. J. Comput. Phys. 156 (1999) 325–351. [CrossRef] [MathSciNet]
  24. B. Maury and R. Glowinski, Fluid-particle flow: a symmetric formulation. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 1079–1084.
  25. J. Nitsche, Finite element approximations for solving the elastic problem, in Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975), Part 1, Lecture Notes in Econom. and Math. Systems 134, Springer-Verlag, Berlin, Germany (1976) 154–167.
  26. O. Pironneau, On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38 (1982) 309–332. [CrossRef]
  27. A. Quaini and A. Quarteroni, A semi-implicit approach for fluid-structure interaction based on an algebraic fractional step method. Math. Models Methods Appl. Sci. 17 (2007) 957–983. [CrossRef] [MathSciNet]
  28. R. Rannacher, On finite element approximation of general boundary value problems in nonlinear elasticity. Calcolo 17 (1980) 175–193. [CrossRef] [MathSciNet]
  29. J. San Martín, J.-F. Scheid, T. Takahashi and M. Tucsnak, Convergence of the Lagrange-Galerkin method for the equations modelling the motion of a fluid-rigid system. SIAM J. Numer. Anal. 43 (2005) 1539–1571.
  30. J. San Martín, L. Smaranda and T. Takahashi, Convergence of a finite element/ALE method for the Stokes equations in a domain depending on time. Prépublication de l'Institut Élie Cartan de Nancy 17 (2006) http://hal.archives-ouvertes.fr/hal-00275223/.
  31. E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53 (1988) 459–483. [CrossRef] [MathSciNet]
  32. T. Takahashi, Analysis of strong solutions for the equations modelling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. [MathSciNet]

Recommended for you