Free access
Issue
ESAIM: M2AN
Volume 42, Number 4, July-August 2008
Page(s) 667 - 682
DOI http://dx.doi.org/10.1051/m2an:2008022
Published online 05 June 2008
  1. P. Alart, M. Barboteu and F. Lebon, Solution of frictional contact problems by an EBE preconditioner. Comput. Mech. 20 (1997) 370–378. [CrossRef]
  2. F. Auricchio, P. Bisegna and C. Lovadina, Finite element approximation of piezoelectric plates. Internat. J. Numer. Methods Engrg. 50 (2001) 1469–1499. [CrossRef] [MathSciNet]
  3. M. Barboteu, J.R. Fernández and Y. Ouafik, Numerical analysis of two frictionless elastic-piezoelectric contact problems. J. Math. Anal. Appl. 339 (2008) 905–917. [CrossRef] [MathSciNet]
  4. R.C. Batra and J.S. Yang, Saint-Venant's principle in linear piezoelectricity. J. Elasticity 38 (1995) 209–218. [CrossRef] [MathSciNet]
  5. P. Bisegna, F. Lebon and F. Maceri, The unilateral frictional contact of a piezoelectric body with a rigid support, in Contact mechanics (Praia da Consolação, 2001), Solid Mech. Appl. 103, Kluwer Acad. Publ., Dordrecht (2002) 347–354.
  6. P.G. Ciarlet, The finite element method for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–352.
  7. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer Verlag, Berlin (1976).
  8. J.R. Fernández, M. Sofonea and J.M. Viaño, A frictionless contact problem for elastic-viscoplastic materials with normal compliance: Numerical analysis and computational experiments. Numer. Math. 90 (2002) 689–719. [CrossRef] [MathSciNet]
  9. R. Glowinski, Numerical Methods for Nonlinear Variational Problems. Springer, New York (1984).
  10. W. Han and M. Sofonea, Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society-International Press (2002).
  11. W. Han, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic problem with normal compliance, friction and damage. J. Comput. Appl. Math. 137 (2001) 377–398. [CrossRef] [MathSciNet]
  12. S. Hüeber, A. Matei and B.I. Wohlmuth, A mixed variational formulation and an optimal a priori error estimate for a frictional contact problem in elasto-piezoelectricity. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 209–232. [MathSciNet]
  13. T. Ideka, Fundamentals of Piezoelectricity. Oxford University Press, Oxford (1990).
  14. A. Klarbring, A. Mikelić and M. Shillor, Frictional contact problems with normal compliance. Internat. J. Engrg. Sci. 26 (1988) 811–832. [CrossRef] [MathSciNet]
  15. F. Maceri and B. Bisegna, The unilateral frictionless contact of a piezoelectric body with a rigid support. Math. Comput. Modelling 28 (1998) 19–28. [CrossRef]
  16. J.A.C. Martins and J.T. Oden, Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11 (1987) 407–428. [CrossRef] [MathSciNet]
  17. R.D. Mindlin, Polarisation gradient in elastic dielectrics. Internat. J. Solids Structures 4 (1968) 637–663. [CrossRef]
  18. R.D. Mindlin, Continuum and lattice theories of influence of electromechanical coupling on capacitance of thin dielectric films. Internat. J. Solids Structures 5 (1969) 1197–1213. [CrossRef]
  19. R.D. Mindlin, Elasticity, piezoelasticity and crystal lattice dynamics. J. Elasticity 4 (1972) 217–280. [CrossRef]
  20. A. Morro and B. Straughan, A uniqueness theorem in the dynamical theory of piezoelectricity. Math. Methods Appl. Sci. 14 (1991) 295–299. [CrossRef] [MathSciNet]
  21. Y. Ouafik, A piezoelectric body in frictional contact. Bull. Math. Soc. Sci. Math. Roumanie 48 (2005) 233–242. [MathSciNet]
  22. M. Sofonea and E.-H. Essoufi, Quasistatic frictional contact of a viscoelastic piezoelectric body. Adv. Math. Sci. Appl. 14 (2004) 25–40. [MathSciNet]
  23. M. Sofonea and E.-H. Essoufi, A piezoelectric contact problem with slip dependent coefficient of friction. Math. Model. Anal. 9 (2004) 229–242. [MathSciNet]
  24. M. Sofonea and Y. Ouafik, A piezoelectric contact problem with normal compliance. Appl. Math. 32 (2005) 425–442. [CrossRef] [MathSciNet]
  25. R.A. Toupin, The elastic dielectrics. J. Rational Mech. Anal. 5 (1956) 849–915. [MathSciNet]
  26. R.A. Toupin, Stress tensors in elastic dielectrics. Arch. Rational Mech. Anal. 5 (1960) 440–452. [CrossRef] [MathSciNet]
  27. R.A. Toupin, A dynamical theory of elastic dielectrics. Internat. J. Engrg. Sci. 1 (1963) 101–126. [CrossRef] [MathSciNet]
  28. N. Turbé and G.A. Maugin, On the linear piezoelectricity of composite materials. Math. Methods Appl. Sci. 14 (1991) 403–412. [CrossRef] [MathSciNet]
  29. P. Wriggers, Computational Contact Mechanics. Wiley-Verlag (2002).

Recommended for you