Free access
Issue
ESAIM: M2AN
Volume 42, Number 6, November-December 2008
Page(s) 1021 - 1045
DOI http://dx.doi.org/10.1051/m2an:2008037
Published online 25 September 2008
  1. J. Ahn, A vibrating string with dynamic frictionless impact. Appl. Numer. Math. 57 (2007) 861–884. [CrossRef] [MathSciNet]
  2. J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Discretization, convergence, and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455–1480 (electronic). [CrossRef] [MathSciNet]
  3. J. Ahn and D.E. Stewart, Existence of solutions for a class of impact problems without viscosity. SIAM J. Math. Anal. 38 (2006) 37–63 (electronic). [CrossRef] [MathSciNet]
  4. J. Ahn and D.E. Stewart, Euler-Bernoulli beam with dynamic contact: Penalty approximation and existence. Numer. Funct. Anal. Optim. 28 (2007) 1003–1026. [MathSciNet]
  5. J. Ahn and D.E. Stewart, Dynamic frictionless contact in linear viscoelasticity. IMA J. Numer. Anal. doi:10.1093/imanum/drm029.
  6. K.T. Andrews, L. Chapman, J.R. Ferández, M. Fisackerly, M. Shillor, L. Vanerian and T. Vanhouten, A membrane in adhesive contact. SIAM J. Appl. Math. 64 (2003) 152–169. [CrossRef] [MathSciNet]
  7. K.T. Andrews, S. Kruk and M. Shillor, Modelling and simulations of a bonded rod. Math. Comput. Model. 42 (2005) 553–572. [CrossRef]
  8. J.H. Bramble and X. Zhang, The Analysis of Multigrid Methods, Handbook of Numerical Analysis VII. North-Holland, Amsterdam (2000).
  9. D. Candeloro and A. Volčič, Radon-Nikodým theorems, Vol. I. North Holland/Elsevier (2002).
  10. O. Chau, J.R. Ferández, M. Shillor and M. Sofonea, Variational and numerical analysis of a quasistatic viscoelastic contact problem with adhesion. J. Comput. Appl. Math. 159 (2003) 431–465. [CrossRef] [MathSciNet]
  11. O. Chau, M. Shillor and M. Sofonea, Dynamic frictionless contact with adhesion. Z. Angew. Math. Phys. 55 (2004) 32–47. [CrossRef] [MathSciNet]
  12. F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, Springer Series in Operations Research I, II. Springer-Verlag, New York (2003).
  13. J.R. Ferández, M. Shillor and M. Sofonea, Analysis and numerical simulations of a dynamic contact problem with adhesion. Math. Comput. Modelling 37 (2003) 1317–1333. [CrossRef] [MathSciNet]
  14. M. Frémond, Équilibre des structures qui adhèrent à leur support. C. R. Acad. Sci. Paris Sér. II 295 (1982) 913–916.
  15. M. Frémond, Adhérence des solides. J. Méc. Théor. Appl. 6 (1987) 383–407.
  16. M. Frémond, Contact with adhesion, in Topics Nonsmooth Mechanics, J.J. Moreau, P.D. Panagiotopoulos and G. Strang Eds. (1988) 157–186
  17. M. Frémond, E. Sacco, N. Point and J.M. Tien, Contact with adhesion, in ESDA Proceedings of the 1996 Engineering Systems Design and Analysis Conference, A. Lagarde and M. Raous Eds., ASME, New York (1996) 151–156.
  18. W. Han, K.L. Kuttler, M. Shillor and M. Sofonea, Elastic beam in adhesive contact. Int. J. Solids Structures 39 (2002) 1145–1164. [CrossRef]
  19. L. Jianu, M. Shillor and M. Sofonea, A viscoelastic frictionless contact problem with adhesion. Appl. Anal. 80 (2001) 233–255. [CrossRef] [MathSciNet]
  20. C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems. Comput. Optim. Appl. 11 (1998) 227–251. [CrossRef] [MathSciNet]
  21. K. Kuttler, Modern Analysis. CRC Press, Boca Raton, FL, USA (1998).
  22. G. Lebeau and M. Schatzman, A wave problem in a half-space with a unilateral contraint at the boundary. J. Diff. Eq. 53 (1984) 309–361. [CrossRef]
  23. A. Petrov and M. Schatzman, Viscoélastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris Sér. I 334 (2002) 983–988.
  24. L.Q. Qi and J. Sun, A nonsmooth version of Newton's method. Math. Program. 58 (1993) 353–367. [CrossRef]
  25. M. Raous, L. Cangémi and M. Cocu, A consistent model coupling adhesion, friction, and unilateral contact. Comput. Methods Appl. Mech. Engrg. 177 (1999) 383–399. [CrossRef] [MathSciNet]
  26. M. Schatzman, A hyperbolic problem of second order with unilateral constraints: the vibrating string with a concave obstacle. J. Math. Anal. Appl. 73 (1980) 138–191. [CrossRef] [MathSciNet]
  27. M. Shillor, M. Sofonea and J. Telega, Models and Analysis of Quasistatic Contact, Lect. Notes Phys. 655. Springer, Berlin-Heidelberg-New York (2004).
  28. M. Sofonea, W. Han and M. Shillor, Analysis and Approximation of Contact Problems with Adhesion or Damage, Pure and Applied Mathematics 276. Chapman-Hall/CRC Press, New York (2006).
  29. D.E. Stewart, Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71 (2006) 92–119. [CrossRef] [MathSciNet]
  30. D.E. Stewart, Differentiating complementarity problems and fractional index convolution complementarity problems. Houston J. Math. 33 (2007) 301–322. [MathSciNet]
  31. D.E. Stewart, Energy balance for viscoelastic bodies in frictionless contact. (Submitted).
  32. M.E. Taylor, Partial Differential Equations 1, Applied Mathematical Sciences 115. Springer-Verlag, New York (1996).
  33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. North Holland, Amsterdam, New York (1978).
  34. J. Wloka, Partial Differential Equations. Cambridge University Press (1987).

Recommended for you