Free access
Issue
ESAIM: M2AN
Volume 43, Number 1, January-February 2009
Page(s) 81 - 117
DOI http://dx.doi.org/10.1051/m2an/2008039
Published online 16 October 2008
  1. J. Alberty, C. Carstensen and S. Funken, Remarks around 50 lines of Matlab: short finite element implementation. Numer. Algorithms 20 (1999) 117–137. [CrossRef] [MathSciNet]
  2. H.W. Alt, Lineare Funktionalanalysis. Springer-Verlag (1999).
  3. A. Bensoussan and J. Frehse, Regularity Results for Nonlinear Elliptic Systems and Applications, Applied Mathematical Sciences 151. Springer-Verlag (2002).
  4. H. Brézis, Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, in Contributions to Non-linear Functional Analysis, E. Zarantonello Ed., Acad. Press (1971) 101–156.
  5. J.C. De Los Reyes and K. Kunisch, A semi-smooth Newton method for control constrained boundary optimal control of the Navier-Stokes equations. Nonlinear Anal. 62 (2005) 1289–1316. [CrossRef] [MathSciNet]
  6. E.J. Dean, R. Glowinski and G. Guidoboni, On the numerical simulation of Bingham visco-plastic flow: Old and new results. J. Non-Newtonian Fluid Mech. 142 (2007) 36–62. [CrossRef]
  7. G. Duvaut and J.L. Lions, Inequalities in Mechanics and Physics. Springer-Verlag, Berlin (1976).
  8. I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland Publishing Company, The Netherlands (1976).
  9. M. Fuchs and G. Seregin, Some remarks on non-Newtonian fluids including nonconvex perturbations of the Bingham and Powell-Eyring model for viscoplastic fluids. Math. Models Methods Appl. Sci. 7 (1997) 405–433. [CrossRef] [MathSciNet]
  10. M. Fuchs and G. Seregin, Regularity results for the quasi-static Bingham variational inequality in dimensions two and three. Math. Z. 227 (1998) 525–541. [CrossRef] [MathSciNet]
  11. M. Fuchs, J.F. Grotowski and J. Reuling, On variational models for quasi-static Bingham fluids. Math. Methods Appl. Sci. 19 (1996) 991–1015. [CrossRef] [MathSciNet]
  12. R. Glowinski, Numerical Methods for Nonlinear Variational Problems, Springer Series in Computational Physics. Springer-Verlag (1984).
  13. R. Glowinski, J.L. Lions and R. Tremolieres, Analyse numérique des inéquations variationnelles. Applications aux phénomènes stationnaires et d'évolution 2, Méthodes Mathématiques de l'Informatique, No. 2. Dunod (1976).
  14. M. Hintermüller and K. Kunisch, Path-following methods for a class of constrained minimization problems in function spaces. SIAM J. Optim. 17 (2006) 159–187. [CrossRef] [MathSciNet]
  15. M. Hintermüller and K. Kunisch, Feasible and non-interior path-following in constrained minimization with low multiplier regularity. SIAM J. Contr. Opt. 45 (2006) 1198–1221. [CrossRef] [MathSciNet]
  16. M. Hintermüller and G. Stadler, An infeasible primal-dual algorithm for TV-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28 (2006) 1–23. [CrossRef] [MathSciNet]
  17. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim. 13 (2003) 865–888. [CrossRef] [MathSciNet]
  18. R.R. Huilgol and Z. You, Application of the augmented Lagrangian method to steady pipe flows of Bingham, Casson and Herschel-Bulkley fluids. J. Non-Newtonian Fluid Mech. 128 (2005) 126–143. [CrossRef]
  19. K. Ito and K. Kunisch, Augmented Lagrangian methods for nonsmooth, convex optimization in Hilbert spaces. Nonlinear Anal. 41 (2000) 591–616. [CrossRef] [MathSciNet]
  20. K. Ito and K. Kunisch, Semi-smooth Newton methods for variational inequalities of the first kind. ESAIM: M2AN 37 (2003) 41–62. [CrossRef] [EDP Sciences]
  21. J.-L. Lions, Optimal Control of Systems Governed by Partial Differential Equations. Springer-Verlag (1971).
  22. P.P. Mosolov and V.P. Miasnikov, Variational methods in the theory of the fluidity of a viscous-plastic medium. J. Appl. Math. Mech. (P.M.M.) 29 (1965) 468–492.
  23. T. Papanastasiou, Flows of materials with yield. J. Rheology 31 (1987) 385–404. [CrossRef]
  24. G. Stadler, Infinite-dimensional Semi-smooth Newton and Augmented Lagrangian Methods for Friction and Contact Problems in Elasticity. Ph.D. thesis, Karl-Franzens University of Graz, Graz, Austria (2004).
  25. G. Stadler, Path-following and augmented Lagrangian methods for contact problems in linear elasticity. J. Comp. Appl. Math. 203 (2007) 533–547. [CrossRef]
  26. D. Sun and J. Han, Newton and quasi-Newton methods for a class of nonsmooth equations and related problems. SIAM J. Optim. 7 (1997) 463–480. [CrossRef] [MathSciNet]
  27. M. Ulbrich, Nonsmooth Newton-like methods for variational inequalities and constrained optimization problems in function spaces. Habilitation thesis, Technische Universität München, Germany (2001–2002).

Recommended for you