Free access
Issue
ESAIM: M2AN
Volume 43, Number 1, January-February 2009
Page(s) 151 - 172
DOI http://dx.doi.org/10.1051/m2an:2008045
Published online 05 December 2008
  1. A. Arnold, J.A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jungel, C. Lederman, P.A. Markowich, G. Toscani and C. Villani, Entropies and equilibria of many-particle systems: An essay on recent research. Monat. Mathematik 142 (2004) 35–43. [CrossRef]
  2. M. Bisi and L. Desvillettes, From reactive Boltzmann equations to reaction-diffusion systems. J. Stat. Phys. 124 (2006) 881–912. [CrossRef] [MathSciNet]
  3. M. Bisi and G. Spiga, Diatomic gas diffusing in a background medium: kinetic approach and reaction-diffusion equations. Commun. Math. Sci. 4 (2006) 779–798. [MathSciNet]
  4. M. Bisi and G. Spiga, Dissociation and recombination of a diatomic gas in a background medium. Proceedings of 25th International Symposium on Rarefied Gas Dynamics (to appear).
  5. M. Cáceres, J. Carrillo and G. Toscani, Long-time behavior for a nonlinear fourth order parabolic equation. Trans. Amer. Math. Soc. 357 (2005) 1161–1175. [CrossRef] [MathSciNet]
  6. J.A. Carrillo and G. Toscani, Asymptotic L1-decay of solutions of the porous medium equation to self-similarity. Indiana University Math. J. 49 (2000) 113–142.
  7. M. Del Pino and J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81 (2002) 847–875. [CrossRef] [MathSciNet]
  8. L. Desvillettes, About entropy methods for reaction-diffusion equations. Rivista Matematica dell'Università di Parma 7 (2007) 81–123.
  9. L. Desvillettes and K. Fellner, Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations. J. Math. Anal. Appl. 319 (2006) 157–176. [CrossRef] [MathSciNet]
  10. L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion systems: Degenerate diffusion. Discrete Contin. Dyn. Syst. Supplement (2007) 304–312.
  11. L. Desvillettes and K. Fellner, Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Revista Mat. Iberoamericana (to appear).
  12. L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. II. H-theorem and applications. Comm. Partial Differ. Equ. 25 (2000) 261–298. [CrossRef]
  13. V. Giovangigli, Multicomponent Flow Modeling. Birkhäuser, Boston (1999).
  14. M. Groppi, A. Rossani and G. Spiga, Kinetic theory of a diatomic gas with reactions of dissociation and recombination through a transition state. J. Phys. A 33 (2000) 8819–8833. [CrossRef] [MathSciNet]
  15. M. Kirane, On stabilization of solutions of the system of parabolic differential equations describing the kinetics of an auto-catalytic reversible chemical reaction. Bull. Institute Math. Academia Sinica 18 (1990) 369–377.
  16. O.A. Ladyzenskaya, V.A. Solonnikov and N.N. Uralceva, Linear and Quasi-linear Equations of Parabolic Type, Trans. Math. Monographs 23. American Mathematical Society, Providence (1968).
  17. K. Masuda, On the global existence and asymptotic behavior of solution of reaction-diffusion equations. Hokkaido Math. J. 12 (1983) 360–370. [MathSciNet]
  18. J.A. McLennan, Boltzmann equation for a dissociating gas. J. Stat. Phys. 57 (1989) 887–905. [CrossRef]
  19. Y. Sone, Kinetic Theory and Fluid Dynamics. Birkhäuser, Boston (2002).
  20. G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Comm. Math. Phys. 203 (1999) 667–706. [CrossRef] [MathSciNet]
  21. Y. Yoshizawa, Wave structures of a chemically reacting gas by the kinetic theory of gases, in Rarefied Gas Dynamics, J.L. Potter Ed., A.I.A.A., New York (1977) 501–517.

Recommended for you