Free access
Issue
ESAIM: M2AN
Volume 43, Number 1, January-February 2009
Page(s) 33 - 52
DOI http://dx.doi.org/10.1051/m2an/2008041
Published online 16 October 2008
  1. M. Ainsworth, J.T. Oden and C.Y. Lee, Local a posteriori error estimators for variational inequalities. Numer. Methods Partial Differential Equations 9 (1993) 23–33. [CrossRef] [MathSciNet]
  2. F. Ali Mehmeti and S. Nicaise, Nonlinear interaction problems. Nonlinear Anal. Theory Methods Appl. 20 (1993) 27–61. [CrossRef]
  3. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Collection Mathématiques & Applications 45. Springer-Verlag (2004).
  4. H. Brezis and G. Stampacchia, Sur la régularité de la solution d'inéquations elliptiques. Bull. Soc. Math. France 96 (1968) 153–180. [MathSciNet]
  5. F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, II. Mixed methods. Numer. Math. 31 (1978-1979) 1–16.
  6. Z. Chen and R.H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems. Numer. Math. 84 (2000) 527–548. [CrossRef] [MathSciNet]
  7. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North Holland, Amsterdam, New York, Oxford (1978).
  8. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17–351.
  9. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 R2 (1975) 77–84.
  10. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod & Gauthier-Villars (1974).
  11. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986).
  12. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman (1985).
  13. J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, in Handbook of Numerical Analysis, Vol. IV, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996) 313–485.
  14. P. Hild and S. Nicaise, Residual a posteriori error estimators for contact problems in elasticity. ESAIM: M2AN 41 (2007) 897–923. [CrossRef] [EDP Sciences]
  15. J.-L. Lions and G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20 (1967) 493–519. [CrossRef] [MathSciNet]
  16. R.H. Nochetto, K.G. Siebert and A. Veeser, Pointwise a posteriori error control for elliptic obstacle problems. Numer. Math. 95 (2003) 163–195. [CrossRef] [MathSciNet]
  17. G. Raugel, Résolution numérique par une méthode d'éléments finis du problème de Dirichlet pour le laplacien dans un polygone. C. R. Acad. Sci. Paris Sér. A-B 286 (1978) A791–A794.
  18. L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. ESAIM: M2AN 38 (2004) 177–201. [CrossRef] [EDP Sciences] [MathSciNet]
  19. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996).
  20. B.I. Wohlmuth, An a posteriori error estimator for two body contact problems on non-matching meshes. J. Sci. Computing 33 (2007) 25–45. [CrossRef]

Recommended for you