Free access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 209 - 238
DOI http://dx.doi.org/10.1051/m2an:2008049
Published online 05 December 2008
  1. J.-M. Bony, Principe du maximum dans les espaces de Sobolev. C. R. Acad. Sci. Paris Sér. A-B 265 (1967) 333–336.
  2. A. Brooks and T. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32 (1982) 99–259.
  3. X. Chen, Superlinear convergence and smoothing quasi-Newton methods for nonsmooth equations. J. Comput. Appl. Math. 80 (1997) 105–126. [CrossRef] [MathSciNet]
  4. M. Delfour and J.-P. Zolésio, Shapes and Geometries. Analysis, Differential Calculus, and Optimization. Philadelphia (2001).
  5. L.C. Evans, A second order elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 4 (1979) 555–572. [CrossRef] [MathSciNet]
  6. D. Gilbarg and N.S. Trudinger, Elliptic Differential Equations of Second Order. Springer, New York (1977).
  7. M. Hintermüller and K. Kunisch, Stationary optimal control problems with pointwise state constraints. SIAM J. Optim. (to appear).
  8. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method. SIAM J. Optim. 13 (2002) 865–888. [CrossRef] [MathSciNet]
  9. H. Ishii and S. Koike, Boundary regularity and uniqueness for an elliptic equation with gradient constraint. Comm. Partial Differ. Equ. 8 (1983) 317–346. [CrossRef] [MathSciNet]
  10. K. Ito and K. Kunisch, The primal-dual active set method for nonlinear optimal control problems with bilateral constraints. SIAM J. Contr. Opt. 43 (2004) 357–376. [CrossRef]
  11. C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge (1987).
  12. K. Kunisch and J. Sass, Trading regions under proportional transaction costs, in Operations Research Proceedings, U.M. Stocker and K.-H. Waldmann Eds., Springer, New York (2007) 563–568.
  13. O.A. Ladyzhenskaya and N.N. Ural'tseva, Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968).
  14. S. Shreve and H.M. Soner, Optimal investment and consumption with transaction costs. Ann. Appl. Probab. 4 (1994) 609–692. [CrossRef] [MathSciNet]
  15. K. Stromberg, Introduction to Classical Real Analysis. Wadsworth International, Belmont, California (1981).
  16. G. Troianiello, Elliptic Differential Equations and Obstacle Problems. Plenum Press, New York (1987).
  17. M. Wiegner, The C1,1-character of solutions of second order elliptic equations with gradient constraint. Comm. Partial Differ. Equ. 6 (1981) 361–371. [CrossRef] [MathSciNet]

Recommended for you