Free access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 277 - 295
DOI http://dx.doi.org/10.1051/m2an:2008046
Published online 05 December 2008
  1. P.B. Bochev and J.M. Hyman, Principles of mimetic discretizations of differential operators, IMA Hot Topics Workshop on Compatible Spatial Discretizations 142, D. Arnold, P. Bochev, R. Lehoucq, R. Nicolaides and M. Shashkov Eds., Springer-Verlag (2006).
  2. S. Brenner and L. Scott, The mathematical theory of finite element methods. Springer-Verlag, Berlin/Heidelberg (1994).
  3. F. Brezzi and A. Buffa, General framework for cochain approximations of differential forms. Technical report, Instituto di Mathematica Applicata a Technologie Informatiche (in preparation).
  4. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes. SIAM J. Numer. Anal. 43 (2005) 1872–1896. [CrossRef] [MathSciNet]
  5. F. Brezzi, K. Lipnikov and V. Simoncini, A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Mod. Meth. Appl. Sci. 15 (2005) 1533–1552. [CrossRef] [MathSciNet]
  6. F. Brezzi, K. Lipnikov and M. Shashkov, Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces. Math. Mod. Meth. Appl. Sci. 16 (2006) 275–297. [CrossRef]
  7. F. Brezzi, K. Lipnikov, M. Shashkov and V. Simoncini, A new discretization methodology for diffusion problems on generalized polyhedral meshes. Comput. Methods Appl. Mech. Engrg. 196 (2007) 3692–3692.
  8. J. Campbell and M. Shashkov, A tensor artificial viscosity using a mimetic finite difference algorithm. J. Comput. Phys. 172 (2001) 739–765. [CrossRef] [MathSciNet]
  9. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland, New York (1978).
  10. M. Dauge, Elliptic boundary value problems on corner domains: smoothness and asymptotics of solutions. Springer-Verlag, Berlin, New York (1988).
  11. P. Dvorak, New element lops time off CFD simulations. Mashine Design 78 (2006) 154–155.
  12. S.L. Lyons, R.R. Parashkevov and X.H. Wu, A family of H1-conforming finite element spaces for calculations on 3D grids with pinch-outs. Numer. Linear Algebra Appl. 13 (2006) 789–799. [CrossRef] [MathSciNet]
  13. L. Margolin, M. Shashkov and P. Smolarkiewicz, A discrete operator calculus for finite difference approximations. Comput. Meth. Appl. Mech. Engrg. 187 (2000) 365–383. [CrossRef] [MathSciNet]
  14. P.A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, I. Galligani and E. Magenes Eds., Springer-Verlag, Berlin-Heilderberg-New York (1977) 292–315.

Recommended for you