Free access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 297 - 331
DOI http://dx.doi.org/10.1051/m2an/2009002
Published online 07 February 2009
  1. M. Ainsworth, Discrete dispersion relation for hp-version finite element approximation at high wave number. SIAM J. Numer. Anal. 42 (2004) 563–575.
  2. D. Arnold, F. Brezzi, B. Cockburn and L. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749–1779. [CrossRef] [MathSciNet]
  3. I. Babuška and J. Melenk, The partition of unity method. Int. J. Numer. Methods Eng. 40 (1997) 727–758. [CrossRef] [MathSciNet]
  4. I. Babuška and S. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation? SIAM Review 42 (2000) 451–484. [CrossRef] [MathSciNet]
  5. L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems. Report 03-06, Institut für Mathematik, Universität Zürich, Zürich, Switzerland (2006).
  6. S. Brenner and R. Scott, Mathematical theory of finite element methods, Texts in Applied Mathematics. Springer-Verlag, New York, 2nd edn. (2002).
  7. A. Buffa and P. Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation. ESAIM: M2AN 42 (2008) 925–940. [CrossRef] [EDP Sciences] [MathSciNet]
  8. P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706. [CrossRef] [MathSciNet]
  9. O. Cessenat, Application d'une nouvelle formulation variationnelle aux équations d'ondes harmoniques. Ph.D. Thesis, Université Parix IX Dauphine, Paris, France (1996).
  10. O. Cessenat and B. Després, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz equation. SIAM J. Numer. Anal. 35 (1998) 255–299. [CrossRef] [MathSciNet]
  11. O. Cessenat and B. Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation. J. Comp. Acoust. 11 (2003) 227–238. [CrossRef]
  12. P. Cummings and X.-B. Feng, Sharp regularity coefficient estimates for complex-valued acoustic and elastic Helmholtz equations. Math. Models Methods Appl. Sci. 16 (2006) 139–160. [CrossRef] [MathSciNet]
  13. B. Despres, Sur une formulation variationnelle de type ultra-faible. C. R. Acad. Sci. Paris, Ser. I 318 (1994) 939–944.
  14. C. Farhat, I. Harari and U. Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime. Comput. Methods Appl. Mech. Eng. 192 (2003) 1389–1419. [CrossRef]
  15. C. Farhat, R. Tezaur and P. Weidemann-Goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 61 (2004) 1938–1956. [CrossRef]
  16. G. Gabard, Discontinuous Galerkin methods with plane waves for the displacement-based acoustic equation. Int. J. Numer. Meth. Engr. 66 (2006) 549–569. [CrossRef]
  17. G. Gabard, Discontinuous Galerkin methods with plane waves for time-harmonic problems. J. Comp. Phys. 225 (2007) 1961–1984. [CrossRef]
  18. C. Gittelson, R. Hiptmair and I. Perugia, Plane wave discontinuous Galerkin methods. Preprint NI07088-HOP, Isaac Newton Institute Cambride, Cambrid, UK (2007). Available at http://www.newton.cam.ac.uk/preprints/NI07088.pdf.
  19. U. Hetmaniuk, Stability estimates for a class of Helmholtz problems. Communications in Mathematical Sciences 5 (2007) 665–678. [MathSciNet]
  20. R. Hiptmair and P. Ledger, A quadrilateral edge element scheme with minimum dispersion. Report 2003-17, SAM, ETH Zürich, Zürich, Switzerland (2003).
  21. T. Huttunen and P. Monk, The use of plane waves to approximate wave propagation in anisotropic media. J. Comput. Math. 25 (2007) 350–367. [MathSciNet]
  22. T. Huttunen, P. Monk and J. Kaipio, Computational aspects of the ultra-weak variational formulation. J. Comp. Phys. 182 (2002) 27–46. [CrossRef] [MathSciNet]
  23. T. Huttunen, M. Malinen and P. Monk, Solving Maxwell's equations using the ultra weak variational formulation. J. Comp. Phys. 223 (2007) 731–758. [CrossRef] [MathSciNet]
  24. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, Applied Mathematical Sciences 132. Springer-Verlag, New York (1998).
  25. O. Laghrouche, P. Bettes and R. Astley, Modelling of short wave diffraction problems using approximating systems of plane waves. Int. J. Numer. Meth. Engr. 54 (2002) 1501–1533. [CrossRef]
  26. J. Melenk, On Generalized Finite Element Methods. Ph.D. Thesis, University of Maryland, USA (1995).
  27. P. Monk and D. Wang, A least squares method for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 175 (1999) 121–136. [CrossRef] [MathSciNet]
  28. E. Perrey-Debain, O. Laghrouche and P. Bettess, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering. Phil. Trans. R. Soc. London A 362 (2004) 561–577. [CrossRef]
  29. H. Riou, P. Ladevéze and B. Sourcis, The multiscale VTCR approach applied to acoustics problems. J. Comp. Acoust. (2008) (to appear).
  30. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959–962. [CrossRef] [MathSciNet]
  31. C. Schwab, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics, Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (1998).
  32. M. Stojek, Least-squares Trefftz-type elements for the Helmholtz equation. Int. J. Numer. Meth. Engr. 41 (1998) 831–849. [CrossRef]
  33. R. Tezaur and C. Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and lagrange multipliers for the solution of mid-frequency Helmholtz problems. Int. J. Numer. Meth. Engr. 66 (2006) 796–815. [CrossRef]

Recommended for you