Free access
Issue
ESAIM: M2AN
Volume 43, Number 2, March-April 2009
Page(s) 377 - 398
DOI http://dx.doi.org/10.1051/m2an:2008047
Published online 05 December 2008
  1. I. Babuška, The finite element method with lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef]
  2. E. Bécache, P. Joly and C. Tsogka, Éléments finis mixtes et condensation de masse en élastodynamique linéaire, (i) Construction. C. R. Acad. Sci. Paris Sér. I 325 (1997) 545–550.
  3. E. Bécache, P. Joly and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems. SINUM 37 (2000) 1053–1084.
  4. E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2d elastic wave propagation. J. Comp. Acoust. 9 (2001) 1175–1203.
  5. E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SINUM 39 (2002) 2109–2132.
  6. E. Bécache, A. Chaigne, G. Derveaux and P. Joly, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Am. 6 (2003) 3368–3383.
  7. E. Bécache, J. Rodríguez and C. Tsogka, On the convergence of the fictitious domain method for wave equation problems. Technical Report RR-5802, INRIA (2006).
  8. E. Bécache, J. Rodríguez and C. Tsogka, A fictitious domain method with mixed finite elements for elastodynamics. SIAM J. Sci. Comput. 29 (2007) 1244–1267. [CrossRef] [MathSciNet]
  9. J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 (1994) 185–200. [NASA ADS] [CrossRef] [MathSciNet]
  10. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
  11. F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics 66 (2001) 294–307. [CrossRef]
  12. F. Collino, P. Joly and F. Millot, Fictitious domain method for unsteady problems: Application to electromagnetic scattering. J. Comput. Phys. 138 (1997) 907–938. [CrossRef] [MathSciNet]
  13. S. Garcès, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles. Ph.D. Thesis, SupAero, France (1998).
  14. V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487–514. [CrossRef] [MathSciNet]
  15. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986).
  16. R. Glowinski, Numerical methods for fluids, Part 3, Chapter 8, in Handbook of Numerical Analysis IX, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (2003) x+1176.
  17. R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693–698.
  18. R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283–303. [CrossRef] [MathSciNet]
  19. P. Grisvard, Singularities in boundary value problems. Springer-Verlag, Masson (1992).
  20. E. Heikkola, Y.A. Kuznetsov, P. Neittaanmäki and J. Toivanen, Fictitious domain methods for the numerical solution of two-dimensional scattering problems. J. Comput. Phys. 145 (1998) 89–109. [CrossRef] [MathSciNet]
  21. E. Heikkola, T. Rossi and J. Toivanen, A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer. J. Comput. Acoust. 11 (2003) 159–174. [CrossRef] [MathSciNet]
  22. E. Hille and R.S. Phillips, Functional analysis and semigroups, Colloquium Publications 31. Rev. edn., Providence, R.I., American Mathematical Society (1957).
  23. P. Joly and L. Rhaouti. Analyse numérique - Domaines fictifs, éléments finis H(div) et condition de Neumann : le problème de la condition inf-sup. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1225–1230.
  24. Yu.A. Kuznetsov, Fictitious component and domain decomposition methods for the solution of eigenvalue problems, in Computing methods in applied sciences and engineering VII (Versailles, 1985), North-Holland, Amsterdam (1986) 155–172.
  25. J.C. Nédélec, A new family of mixed finite elements in . Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet]
  26. L. Rhaouti, Domaines fictifs pour la modélisation d'un probème d'interaction fluide-structure : simulation de la timbale. Ph.D. Thesis, Paris IX, France (1999).

Recommended for you