Free access
Issue
ESAIM: M2AN
Volume 43, Number 3, May-June 2009
Page(s) 445 - 485
DOI http://dx.doi.org/10.1051/m2an:2008051
Published online 18 December 2008
  1. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J. Non-Newtonian Fluid Mech. 139 (2006) 153–176. [CrossRef]
  2. A. Ammar, B. Mokdad, F. Chinesta and R. Keunings, A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. Part II: Transient simulation using space-time separated representations. J. Non-Newtonian Fluid Mech. 144 (2007) 98–121. [CrossRef]
  3. F.G. Avkhadiev and K.-J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for convex domains. ZAMM Z. Angew. Math. Mech. 87 (2007) 632–642. [CrossRef] [MathSciNet]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  5. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Mod. Meth. Appl. Sci. 18 (2008) 935–971. [CrossRef] [MathSciNet] [PubMed]
  6. J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. (2008) online. Available at http://imajna.oxfordjournals.org/cgi/content/abstract/drn022.
  7. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet]
  8. C. Bernardi, Optimal finite-element interpolation on curved domains. SIAM J. Numer. Anal. 26 (1989) 1212–1240. [CrossRef] [MathSciNet]
  9. C. Bernardi and Y. Maday, Spectral methods, in Handbook of Numerical Analysis V, P. Ciarlet and J. Lions Eds., Elsevier (1997).
  10. O.V. Besov and A. Kufner, The density of smooth functions in weight spaces. Czechoslova. Math. J. 18 (1968) 178–188.
  11. O.V. Besov, J. Kadlec and A. Kufner, Certain properties of weight classes. Dokl. Akad. Nauk SSSR 171 (1966) 514–516. [MathSciNet]
  12. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, Fluid Mechanics. Second edition, John Wiley and Sons (1987).
  13. R.B. Bird, C.F. Curtiss, R.C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. Second edition, John Wiley and Sons (1987).
  14. S. Bobkov and M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. [CrossRef] [MathSciNet]
  15. C. Canuto, A. Quarteroni, M.Y. Hussaini and T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer (2006).
  16. S. Cerrai, Second Order PDE's in Finite and Infinite Dimensions, A Probabilistic Approach, Lecture Notes in Mathematics 1762. Springer (2001).
  17. C. Chauvière and A. Lozinski, Simulation of complex viscoelastic flows using Fokker-Planck equation: 3D FENE model. J. Non-Newtonian Fluid Mech. 122 (2004) 201–214. [CrossRef]
  18. C. Chauvière and A. Lozinski, Simulation of dilute polymer solutions using a Fokker-Planck equation. Comput. Fluids 33 (2004) 687–696. [CrossRef]
  19. G. Da Prato and A. Lunardi, On a class of elliptic operators with unbounded coefficients in convex domains. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 15 (2004) 315–326. [MathSciNet]
  20. Q. Du, C. Liu and P. Yu, FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709–731. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  21. H. Eisen, W. Heinrichs and K. Witsch, Spectral collocation methods and polar coordinate singularities. J. Comput. Phys. 96 (1991) 241–257. [CrossRef] [MathSciNet]
  22. M. Golubitsky and V. Guillemin, Stable Mappings and Their Singularities. Springer (1973).
  23. B. Jourdain, T. Lelièvre and C. Le Bris, Numerical analysis of micro-macro simulations of polymeric fluid flows: A simple case. Math. Mod. Meth. Appl. Sci. 12 (2002) 1205–1243. [CrossRef]
  24. A.N. Kolmogorov, Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung. Math. Ann. 104 (1931).
  25. A. Kufner, Weighted Sobolev Spaces, Teubner-Texte zur Mathematik. Teubner (1980).
  26. T. Li and P.-W. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1–51. [MathSciNet]
  27. A. Lozinski and C. Chauvière, A fast solver for Fokker-Planck equation applied to viscoelastic flows calculation: 2D FENE model. J. Comput. Phys. 189 (2003) 607–625. [CrossRef] [MathSciNet]
  28. M. Marcus, V.J. Mizel and Y. Pinchover, On the best constant for Hardy's inequality in Rn. Trans. Amer. Math. Soc. 350 (1998) 3237–3255. [CrossRef] [MathSciNet]
  29. T. Matsushima and P.S. Marcus, A spectral method for polar coordinates. J. Comput. Phys. 120 (1995) 365–374. [CrossRef] [MathSciNet]
  30. H.C. Öttinger, Stochastic Processes in Polymeric Fluids. Springer (1996).
  31. J. Shen, Efficient spectral Galerkin methods III: Polar and cylindrical geometries. SIAM J. Sci. Comput. 18 (1997) 1583–1604. [CrossRef] [MathSciNet]
  32. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis. Third edition, North-Holland, Amsterdam (1984).
  33. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Second edition, Johan Ambrosius Barth, Heidelberg (1995).
  34. W.T.M. Verkley, A spectral model for two-dimensional incompressible fluid flow in a circular basin I. Mathematical formulation. J. Comput. Phys. 136 (1997) 100–114. [CrossRef] [MathSciNet]

Recommended for you