Free access
Issue
ESAIM: M2AN
Volume 43, Number 3, May-June 2009
Page(s) 591 - 604
DOI http://dx.doi.org/10.1051/m2an/2009007
Published online 08 April 2009
  1. M. Arndt and M. Luskin, Goal-oriented atomistic-continuum adaptivity for the quasicontinuum approximation. Int. J. Mult. Comp. Eng. 5 (2007) 407–415. [CrossRef]
  2. M. Arndt and M. Luskin, Error estimation and atomistic-continuum adaptivity for the quasicontinuum approximation of a Frenkel-Kontorova model. Multiscale Model. Simul. 7 (2008) 147–170. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  3. M. Arndt and M. Luskin, Goal-oriented adaptive mesh refinement for the quasicontinuum approximation of a Frenkel-Kontorova model. Comp. Meth. App. Mech. Eng. 197 (2008) 4298–4306. [CrossRef]
  4. S. Badia, M.L. Parks, P.B. Bochev, M. Gunzburger and R.B. Lehoucq, On atomistic-to-continuum (AtC) coupling by blending. Multiscale Model. Simul. 7 (2008) 381–406. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  5. X. Blanc, C. Le Bris and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics. ESAIM: M2AN 39 (2005) 797–826. [CrossRef] [EDP Sciences]
  6. W. Curtin and R. Miller, Atomistic/continuum coupling in computational materials science. Model. Simul. Mater. Sc. 11 (2003) R33–R68. [CrossRef]
  7. M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum method. ESAIM: M2AN 42 (2008) 113–139. [CrossRef] [EDP Sciences]
  8. W. E and P. Ming. Analysis of the local quasicontinuum method, in Frontiers and Prospects of Contemporary Applied Mathematics, T. Li and P. Zhang Eds., Higher Education Press, World Scientific (2005) 18–32.
  9. W. E., J. Lu and J. Yang, Uniform accuracy of the quasicontinuum method. Phys. Rev. B 74 (2006) 214115. [CrossRef]
  10. J. Knap and M. Ortiz, An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49 (2001) 1899–1923. [CrossRef]
  11. P. Lin, Theoretical and numerical analysis for the quasi-continuum approximation of a material particle model. Math. Comp. 72 (2003) 657–675 (electronic). [CrossRef] [MathSciNet]
  12. P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material. SIAM J. Numer. Anal. 45 (2007) 313–332. [CrossRef] [MathSciNet]
  13. R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions. J. Comput. Aided Mater. Des. 9 (2002) 203–239. [CrossRef]
  14. R. Miller, L. Shilkrot and W. Curtin. A coupled atomistic and discrete dislocation plasticity simulation of nano-indentation into single crystal thin films. Acta Mater. 52 (2003) 271–284. [CrossRef]
  15. P. Ming and J.Z. Yang, Analysis of a one-dimensional nonlocal quasicontinuum method. Preprint.
  16. J.T. Oden, S. Prudhomme, A. Romkes and P. Bauman, Multi-scale modeling of physical phenomena: Adaptive control of models. SIAM J. Sci. Comput. 28 (2006) 2359–2389. [CrossRef] [MathSciNet]
  17. C. Ortner and E. Süli, A-posteriori analysis and adaptive algorithms for the quasicontinuum method in one dimension. Research Report NA-06/13, Oxford University Computing Laboratory (2006).
  18. C. Ortner and E. Süli, Analysis of a quasicontinuum method in one dimension. ESAIM: M2AN 42 (2008) 57–91. [CrossRef] [EDP Sciences]
  19. M.L. Parks, P.B. Bochev and R.B. Lehoucq, Connecting atomistic-to-continuum coupling and domain decomposition. Multiscale Model. Simul. 7 (2008) 362–380. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  20. S. Prudhomme, P.T. Bauman and J.T. Oden, Error control for molecular statics problems. Int. J. Mult. Comp. Eng. 4 (2006) 647–662. [CrossRef]
  21. D. Rodney and R. Phillips, Structure and strength of dislocation junctions: An atomic level analysis. Phys. Rev. Lett. 82 (1999) 1704–1707. [CrossRef]
  22. V. Shenoy, R. Miller, E. Tadmor, D. Rodney, R. Phillips and M. Ortiz, An adaptive finite element approach to atomic-scale mechanics – the quasicontinuum method. J. Mech. Phys. Solids 47 (1999) 611–642. [CrossRef] [MathSciNet]
  23. T. Shimokawa, J. Mortensen, J. Schiotz and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic regions. Phys. Rev. B 69 (2004) 214104. [CrossRef]
  24. G. Strang and G. Fix, Analysis of the Finite Elements Method. Prentice Hall (1973).
  25. E. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids. Phil. Mag. A 73 (1996) 1529–1563. [CrossRef]

Recommended for you