Free access
Issue
ESAIM: M2AN
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 757 - 784
DOI http://dx.doi.org/10.1051/m2an/2009026
Published online 08 July 2009
  1. G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704–718. [CrossRef] [MathSciNet]
  2. J. Carr, Applications of Centre Manifold Theory, Applied Mathematical Sciences 35. Springer-Verlag, New York (1981).
  3. J. Curry, S.E. Haupt and M.E. Limber, Low-order modeling, initializations, and the slow manifold. Tellus 47A (1995) 145–161.
  4. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eq. 31 (1979) 53–98. [CrossRef] [MathSciNet]
  5. C.W. Gear and I.G. Kevrekidis, Constraint-defined manifolds: a legacy-code approach to low-dimensional computation. J. Sci. Comp. 25 (2005) 17–28. [CrossRef]
  6. C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, Projecting to a slow manifold: singularly perturbed systems and legacy codes. SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732. [CrossRef] [MathSciNet]
  7. S.S. Girimaji, Reduction of large dynamical systems by minimization of evolution rate. Phys. Rev. Lett. 82 (1999) 2282–2285. [CrossRef]
  8. C.K.R.T. Jones, Geometric singular perturbation theory, in Dynamical Systems, Montecatini Terme, L. Arnold Ed., Lecture Notes Math. 1609, Springer-Verlag, Berlin (1994) 44–118.
  9. H.G. Kaper and T.J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165 (2002) 66–93. [CrossRef] [MathSciNet]
  10. C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, Frontiers In Applied Mathematics 16. SIAM Publications, Philadelphia (1995).
  11. I.G. Kevrekidis, C.W. Gear, J.M. Hyman, P.G. Kevrekidis, O. Runborg and C. Theodoropoulos, Equation-free, coarse-grained multiscale computation: enabling microscopic simulators to perform system-level analysis. Commun. Math. Sci. 1 (2003) 715–762. [MathSciNet]
  12. H.-O. Kreiss, Problems with different time scales for ordinary differential equations. SIAM J. Numer. Anal. 16 (1979) 980–998. [CrossRef] [MathSciNet]
  13. H.-O. Kreiss, Problems with Different Time Scales, in Multiple Time Scales, J.H. Brackbill and B.I. Cohen Eds., Academic Press (1985) 29–57.
  14. E.N. Lorenz, Attractor sets and quasi-geostrophic equilibrium. J. Atmos. Sci. 37 (1980) 1685–1699. [CrossRef]
  15. U. Maas and S.B. Pope, Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88 (1992) 239–264. [CrossRef]
  16. P.J. Olver, Applications of Lie Groups to Differential Equations, Graduate Texts in Mathematics 107. Springer-Verlag, New York (1986).
  17. G.M. Shroff and H.B. Keller, Stabilization of unstable procedures: A recursive projection method. SIAM J. Numer. Anal. 30 (1993) 1099–1120. [CrossRef] [MathSciNet]
  18. P. van Leemput, W. Vanroose and D. Roose, Initialization of a Lattice Boltzmann Model with Constrained Runs. Report TW444, Catholic University of Leuven, Belgium (2005).
  19. P. van Leemput, C. Vandekerckhove, W. Vanroose and D. Roose, Accuracy of hybrid Lattice Boltzmann/Finite Difference schemes for reaction-diffusion systems. Multiscale Model. Sim. 6 (2007) 838–857. [CrossRef]
  20. A. Zagaris, H.G. Kaper and T.J. Kaper, Analysis of the Computational Singular Perturbation reduction method for chemical kinetics. J. Nonlin. Sci. 14 (2004) 59–91. [CrossRef] [MathSciNet]
  21. A. Zagaris, H.G. Kaper and T.J. Kaper, Fast and slow dynamics for the Computational Singular Perturbation method. Multiscale Model. Sim. 2 (2004) 613–638. [CrossRef]
  22. A. Zagaris, C. Vandekerckhove, C.W. Gear, T.J. Kaper and I.G. Kevrekidis, Stability and stabilization of the constrained runs schemes for equation-free projection to a slow manifold. Numer. Math. (submitted).

Recommended for you