Free access
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 743 - 755
Published online 08 July 2009
  1. E. Akhmatskaya and S. Reich, GSHMC: An efficient method for molecular simulations. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet]
  2. E. Akhmatskaya, N. Bou-Rabee and S. Reich, Generalized hybrid Monte Carlo methods with and without momentum flip. J. Comput. Phys. 227 (2008) 4934–4954. [CrossRef] [MathSciNet]
  3. M.P. Allen and D.J. Tildesley, Computer Simulation of Liquids. Clarendon Press, Oxford (1987)
  4. S.D. Bond, B.J. Leimkuhler and B.B. Laird, The Nosé-Poincaré method for constant temperature molecular dynamics. J. Comput. Phys. 151 (1999) 114–134. [CrossRef] [MathSciNet]
  5. G. Bussi, D. Donadio and M. Parrinello, Canonical sampling through velocity rescaling. J. Chem. Phys. 126 (2007) 014101. [CrossRef] [PubMed]
  6. S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte-Carlo. Phys. Lett. B 195 (1987) 216–222. [NASA ADS] [CrossRef]
  7. D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press, New York (1996).
  8. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31 (1985) 1695–1697. [CrossRef] [PubMed]
  9. A.M. Horowitz, A generalized guided Monte-Carlo algorithm. Phys. Lett. B 268 (1991) 247–252. [CrossRef]
  10. J.A. Izaguirre and S.S. Hampton, Shadow Hybrid Monte Carlo: An efficient propagator in phase space of macromolecules. J. Comput. Phys. 200 (2004) 581–604. [CrossRef]
  11. A.D. Kennedy and B. Pendleton, Cost of the generalized hybrid Monte Carlo algorithm for free field theory. Nucl. Phys. B 607 (2001) 456–510. [CrossRef]
  12. P. Klein, Pressure and temperature control in molecular dynamics simulations: a unitary approach in discrete time. Modelling Simul. Mater. Sci. Eng. 6 (1998) 405–421. [CrossRef]
  13. F. Legoll, M. Luskin and R. Moeckel, Non-ergodicity of the Nose-Hoover thermostatted harmonic oscillator. Arch. Ration. Mech. Anal. 184 (2007) 449–463. [CrossRef] [MathSciNet]
  14. B. Leimkuhler and C. Sweet, A Hamiltonian formulation for recursive multiple thermostats in a common timescale. SIAM J. Appl. Dyn. Syst. 4 (2005) 187–216. [CrossRef] [MathSciNet]
  15. B. Leimkuhler, E. Noorizadeh and F. Theil, A gentle ergodic thermostat for molecular dynamics. J. Stat. Phys. (2009), doi: 10.1007/s10955-009-9734-0.
  16. J.S. Liu, Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New York (2001).
  17. G.J. Martyna, M.L. Klein and M. Tuckerman, Nose-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 97 (1992) 2635–2643. [CrossRef]
  18. S. Nosé, A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81 (1984) 511–519. [CrossRef]
  19. B. Oksendal, Stochastic Differential Equations. 5th Edition, Springer-Verlag, Berlin-Heidelberg (2000).
  20. J.-P. Ryckaert and A. Bellemans, Molecular dynamics of liquid alkanes. Faraday Discussions 66 (1978) 95–107. [CrossRef]
  21. A. Samoletov, M.A.J. Chaplain and C.P. Dettmann, Thermostats for “slow" configurational modes. J. Stat. Phys. 128 (2007) 1321–1336. [CrossRef] [MathSciNet]

Recommended for you