Free access
Issue
ESAIM: M2AN
Volume 43, Number 4, July-August 2009
Special issue on Numerical ODEs today
Page(s) 805 - 823
DOI http://dx.doi.org/10.1051/m2an/2009030
Published online 08 July 2009
  1. U. Ascher and L. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA (1998).
  2. K.E. Brenan, S.L. Campbell and L.R. Petzold, The Numerical Solution of Initial Value Problems in Ordinary Differential-Algebraic Equations. SIAM, Philadelphia, USA (1996).
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer (1991).
  4. P. Brown, A. Hindmarsh and L.R. Petzold, Using Krylow methods in the solution of large-scale differential-algebraic systems. SIAM J. Sci. Comp. 15 (1994) 1467–1488. [CrossRef] [MathSciNet]
  5. COMSOL Multiphysics User Manual, Version 3.4 (2007).
  6. M. Cross, J. Rogers, R. Lifshitz and A. Zumdieck, Synchronization by reactive coupling and nonlinear frequency pulling. Phys. Rev. E 73 (2006) 036205. [CrossRef] [MathSciNet]
  7. F. Dietrich, Ein Zweiskalenansatz zur Modellierung der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2007).
  8. E. Gallasch and T. Kenner, Characterisation of arm microvibration recorded on an accelometer. Eur. J. Appl. Physiol. 75 (1997) 226–232.
  9. E. Gallasch and M. Moser, Effects of an eight-day space flight on microvibration and physiological tremor. Am. J. Physiol. 273 (1997) R86–R92. [PubMed]
  10. C. Gear, G. Gupta and B. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints. J. Comp. Appl. Math. 12 (1985) 77–90. [CrossRef]
  11. A. Gielen, C. Oomens, P. Bovendeerd and T. Arts, A finite element approach for skeletal muscle using a distributed moment model of contraction. Comp. Meth. Biomech. Biomed. Engng. 3 (2000) 231–244. [CrossRef]
  12. A. Goldbeter, Biochemical Oscillations and Cellular Rhythms. Cambridge University Press (1996).
  13. G. Golub and C. van Loan, Matrix Computations. Third Edition, John Hopkins University Press, Baltimore (1996).
  14. A.V. Hill, The heat of shortening and the dynamic constants of muscle. P. Roy. Soc. Lond. B Bio. 126 (1938) 136–195. [CrossRef]
  15. T.J. Hughes, The Finite Element Method. Prentice Hall, Englewood Cliffs (1987).
  16. A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957) 255–318. [PubMed]
  17. E. Kuhl, K. Garikipati, E.M. Arruda and K. Grosh, Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. J. Mech. Physics Solids 53 (2005) 1552–1573. [CrossRef]
  18. G.T. Line, J. Sundnes and A. Tveito, An operator splitting method for solving the Bidomain equations coupled to a volume conductor model for the torso. Math. Biosci. 194 (2005) 233–248. [CrossRef] [MathSciNet] [PubMed]
  19. Ch. Lubich, Integration of stiff mechanical systems by Runge-Kutta methods. ZAMP 44 (1993) 1022–1053.
  20. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Dover Publications (1994).
  21. W. Maurel, N.Y. Wu and D. Thalmann, Biomechanical models for soft tissue simulation. Springer (1998).
  22. P. Matthews, R. Mirollo and St. Strogatz, Dynamics of a large system of coupled nonlinear oscillators. Physica D 52 (1991) 293–331. [CrossRef] [MathSciNet]
  23. U. Randoll, Matrix-Rhythm-Therapy of Dynamic Illnesses, in Extracellular Matrix and Groundregulation System in Health and Disease, H. Heine, M. Rimpler, G. Fischer Eds., Stuttgart-Jena-New York (1997) 57–70.
  24. B. Simeon, On Lagrange multipliers in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195 (2006) 6993–7005. [CrossRef]
  25. www-m2.ma.tum.de/twiki/bin/view/Allgemeines/ProfessorSimeon/movie12.avi.
  26. S. Thiemann, Modellierung und numerische Simulation der Skelettmuskulatur. Diploma Thesis, TU München, Germany (2006).
  27. G.I. Zahalak and I. Motabarzadeh, A re-examination of calcium activation in the Huxley cross-bridge model. J. Biomech. Engng. 119 (1997) 20–29. [CrossRef]

Recommended for you