Free access
Issue
ESAIM: M2AN
Volume 43, Number 5, September-October 2009
Page(s) 973 - 1001
DOI http://dx.doi.org/10.1051/m2an/2009032
Published online 01 August 2009
  1. Adimurthi and G.D. Veerappa Gowda, Conservation law with discontinuous flux. J. Math. Kyoto Univ. 43 (2003) 27–70. [MathSciNet]
  2. Adimurthi, J. Jaffré and G.D. Veerappa Gowda, Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42 (2004) 179–208 (electronic). [CrossRef] [MathSciNet]
  3. Adimurthi, S. Mishra and G.D. Veerappa Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2 (2005) 783–837. [CrossRef] [MathSciNet]
  4. Adimurthi, S. Mishra and G.D. Veerappa Gowda, Existence and stability of entropy solutions for a conservation law with discontinuous non-convex fluxes. Netw. Heterog. Media 2 (2007) 127–157 (electronic). [CrossRef] [MathSciNet]
  5. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311–341. [CrossRef] [MathSciNet]
  6. F. Bachmann, Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Adv. Differ. Equ. 9 (2004) 1317–1338.
  7. F. Bachmann, Equations hyperboliques scalaires à flux discontinu. Ph.D. Thesis, Université Aix-Marseille I, France (2005).
  8. F. Bachmann, Finite volume schemes for a non linear hyperbolic conservation law with a flux function involving discontinuous coefficients. Int. J. Finite Volumes 3 (2006) (electronic).
  9. F. Bachmann and J. Vovelle, Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm. Partial Differ. Equ. 31 (2006) 371–395. [CrossRef] [MathSciNet]
  10. M. Bertsch, R. Dal Passo and C.J. van Duijn, Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35 (2003) 245–267 (electronic). [CrossRef] [MathSciNet]
  11. D. Blanchard and A. Porretta, Stefan problems with nonlinear diffusion and convection. J. Differ. Equ. 210 (2005) 383–428. [CrossRef]
  12. H. Brézis, Analyse Fonctionnelle : Théorie et applications. Masson (1983).
  13. C. Cancès, Écoulements diphasiques en milieux poreux hétérogènes : modélisation et analyse des effets liés aux discontinuités de la pression capillaire. Ph.D. Thesis, Université de Provence, France (2008).
  14. C. Cancès, Nonlinear parabolic equations with spatial discontinuities. Nonlinear Differ. Equ. Appl. 15 (2008) 427–456. [CrossRef]
  15. C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. I. Convergence to an entropy solution. arXiv:0902.1877 (submitted).
  16. C. Cancès, Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only of the space. II. Occurrence of non-classical shocks to model oil-trapping. arXiv:0902.1872 (submitted).
  17. C. Cancès and T. Gallouët, On the time continuity of entropy solutions. arXiv:0812.4765v1 (2008).
  18. C. Cancès, T. Gallouët and A. Porretta, Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound. 11 (2009) 239–258. [MathSciNet]
  19. J. Carrillo, Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147 (1999) 269–361. [CrossRef] [MathSciNet]
  20. C. Chainais-Hillairet, Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: M2AN 33 (1999) 129–156. [CrossRef] [EDP Sciences]
  21. J. Droniou, A density result in Sobolev spaces. J. Math. Pures Appl. (9) 81 (2002) 697–714. [CrossRef] [MathSciNet]
  22. G. Enchéry, R. Eymard and A. Michel, Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43 (2006) 2402–2422. [CrossRef] [MathSciNet]
  23. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet]
  24. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (2000) 713–1020.
  25. G. Gagneux and M. Madaune-Tort, Unicité des solutions faibles d'équations de diffusion-convection. C. R. Acad. Sci. Paris Sér. I Math. 318 (1994) 919–924.
  26. J. Jimenez, Some scalar conservation laws with discontinuous flux. Int. J. Evol. Equ. 2 (2007) 297–315. [MathSciNet]
  27. K.H. Karlsen, N.H. Risebro and J.D. Towers, On a nonlinear degenerate parabolic transport-diffusion equation with a discontinuous coefficient. Electron. J. Differ. Equ. 2002 (2002) n° 93, 1–23 (electronic).
  28. K.H. Karlsen, N.H. Risebro and J.D. Towers, Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J. Numer. Anal. 22 (2002) 623–664. [CrossRef] [MathSciNet]
  29. K.H. Karlsen, N.H. Risebro and J.D. Towers, L1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr. K. Nor. Vidensk. Selsk. 3 (2003) 1–49.
  30. C. Mascia, A. Porretta and A. Terracina, Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations. Arch. Ration. Mech. Anal. 163 (2002) 87–124. [CrossRef] [MathSciNet]
  31. A. Michel and J. Vovelle, Entropy formulation for parabolic degenerate equations with general Dirichlet boundary conditions and application to the convergence of FV methods. SIAM J. Numer. Anal. 41 (2003) 2262–2293 (electronic). [CrossRef] [MathSciNet]
  32. A. Michel, C. Cancès, T. Gallouët and S. Pegaz, Numerical comparison of invasion percolation models and finite volume methods for buoyancy driven migration of oil in discontinuous capillary pressure fields. (In preparation).
  33. F. Otto, L1-contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Differ. Equ. 131 (1996) 20–38. [CrossRef] [MathSciNet]
  34. N. Seguin and J. Vovelle, Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math. Models Methods Appl. Sci. 13 (2003) 221–257. [CrossRef] [MathSciNet] [PubMed]
  35. J.D. Towers, Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J. Numer. Anal. 38 (2000) 681–698 (electronic). [CrossRef] [MathSciNet]
  36. J.D. Towers, A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J. Numer. Anal. 39 (2001) 1197–1218 (electronic). [CrossRef] [MathSciNet]
  37. C.J. van Duijn, J. Molenaar and M.J. de Neef, The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transport Porous Med. 21 (1995) 71–93. [CrossRef]
  38. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. [CrossRef] [MathSciNet]

Recommended for you