Free access
Issue
ESAIM: M2AN
Volume 43, Number 6, November-December 2009
Page(s) 1185 - 1201
DOI http://dx.doi.org/10.1051/m2an/2009035
Published online 21 August 2009
  1. M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Comput. 73 (2003) 1673–1697. [CrossRef]
  2. M. Amara, D. Capatina-Papaghiuc and D. Trujillo, Stabilized finite element method for the Navier-Stokes equations with physical boundary conditions. Math. Comput. 76 (2007) 1195–1217. [CrossRef]
  3. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet]
  4. C. Bègue, C. Conca, F. Murat and O. Pironneau, Les équations de Stokes et de Navier-Stokes avec des conditions aux limites sur la pression, in Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar IX, H. Brezis and J.-L. Lions Eds., Pitman (1988) 179–264.
  5. C. Bernardi, Y. Maday and F. Rapetti, Discrétisations variationnelles de problèmes aux limites elliptiques, Mathématiques & Applications 45. Springer (2004).
  6. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer, Berlin (1991).
  7. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite-dimensional approximation of nonlinear problems. I. Branches of nonsingular solutions. Numer. Math. 36 (1980/1981) 1–25.
  8. C. Conca, C. Parés, O. Pironneau and M. Thiriet, Navier-Stokes equations with imposed pressure and velocity fluxes. Internat. J. Numer. Methods Fluids 20 (1995) 267–287. [CrossRef] [MathSciNet]
  9. M. Costabel, A remark on the regularity of solutions of Maxwell's equations on Lipschitz domain. Math. Meth. Appl. Sci. 12 (1990) 365–368. [CrossRef]
  10. M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, Springer (2004) 125–161.
  11. F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091–1119. [CrossRef]
  12. F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pures Appl. 82 (2003) 1395–1451. [CrossRef] [MathSciNet]
  13. K.O. Friedrichs, Differential forms on Riemannian manifolds. Comm. Pure Appl. Math. 8 (1955) 551–590. [CrossRef] [MathSciNet]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer (1986).
  15. F. Hecht, A. Le Hyaric, K. Ohtsuka and O. Pironneau, Freefem++. Second edition, v. 3.0-1, Université Pierre et Marie Curie, Paris, France (2007), http://www.freefem.org/ff++/ftp/freefem++doc.pdf.
  16. O. Kavian, Introduction à la théorie des points critiques et applications aux problèmes elliptiques, Mathématiques & Applications 13. Springer (1993).
  17. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications 1. Dunod (1968).
  18. M. Orlt and A.-M. Sändig, Regularity of viscous Navier-Stokes flows in nonsmooth domains, in Proc. Conf. Boundary Value Problems and Integral Equations in Nonsmooth Domain, Dekker (1995) 185–201.
  19. J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet]
  20. S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France (1999).
  21. F. Trèves, Basic Linear Partial Differential Equations. Academic Press (1975).
  22. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Teubner-Wiley (1996).

Recommended for you