Free access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 109 - 131
DOI http://dx.doi.org/10.1051/m2an/2009042
Published online 16 December 2009
  1. R. Belaouar, N. Crouseilles, P. Degond and E. Sonnendrücker, An asymptotically stable semi-lagrangian scheme in the quasi-neutral limit. J. Sci. Comput. 41 (2009) 341–365. [CrossRef] [MathSciNet]
  2. C.K. Birdsall and A.B. Langdon, Plasma Physics via Computer Simulation. Institute of Physics Publishing, Bristol and Philadelphia (1991).
  3. J.A. Carrillo and F. Vecil, Non-oscillatory interpolation methods applied to Vlasov-based models. SIAM J. Sci. Comput. 29 (2007) 1179–1206. [CrossRef] [MathSciNet]
  4. M. Chane-Yook, S. Clerc and S. Piperno, Space charge and potential distribution around a spacecraft in a isotropic plasma. J. Geophys. Res. - Space Physics 111 (2006) A04211. [CrossRef]
  5. O. Chanrion, Simulation de l'influence de la propulsion plasmique sur la charge électrostatique d'un satellite en milieu magnétosphérique. Ph.D. Thesis, École nationale des ponts et chaussées, France (2001).
  6. J.-P. Chehab, A. Cohen, D. Jennequin, J.J. Nieto, Ch. Roland and J.-R. Roche, An adaptive particle-in-cell method using multi-resolution analysis, in Numerical methods for hyperbolic and kinetic problems, IRMA Lect. Math. Theor. Phys. 7, S. Cordier, T. Goudon, M. Gutnic and E. Sonnendrücker Eds., Eur. Math. Soc., Zürich, Switzerland (2005) 29–42.
  7. M. Cho, Arcing on high voltage solar arrays in low earth orbit: theory and computer particle simulation. Ph.D. Thesis, Massachusetts Institute of Technology, USA (1992).
  8. S. Clerc, S. Brosse and M. Chane-Yook, Sparcs: an advanced software for spacecraft charging analysis, in 8th Spacecraft Charging Tech. Conf., Huntsville, USA (2003).
  9. G.-H. Cottet and P.-A. Raviart, Particle methods for the one-dimensional Vlasov–Poisson equations. SIAM J. Numer. Anal. 21 (1984) 52–76.
  10. P. Crispel, Modélisation mathématique et simulation de la transition d'une décharge électrostatique primaire vers un arc électrique secondaire entretenu par la puissance photovoltaïque d'un générateur solaire de satellite. Ph.D. Thesis, Université Paul Sabatier Toulouse III, France (2006).
  11. P. Crispel, P. Degond and M.-H. Vignal, Quasi-neutral fluid models for current-carrying plasmas. J. Comput. Phys. 205 (2005) 408–438. [CrossRef] [MathSciNet]
  12. N. Crouseilles and F. Filbet, Numerical approximation of collisional plasma by high order methods. J. Comp. Phys. 201 (2004) 546–572. [CrossRef]
  13. N. Crouseilles, G. Latu and E. Sonnendrücker, Hermite spline interpolation on patches for parallely solving the Vlasov-Poisson equation. Int. J. Appl. Math. Comput. Sci. 17 (2007) 101–115. [CrossRef]
  14. P. Degond, F. Deluzet and L. Navoret, An asymptotically stable Particle-In-Cell (PIC) scheme for collisionless plasma simulations near quasineutrality. C. R. Acad. Sci. Paris, Ser. I 343 (2006) 613–618.
  15. F. Filbet and E. Sonnendrücker, Comparison of Eulerian Solver. Comput. Phys. Comm. 150 (2003) 247–266. [CrossRef] [MathSciNet]
  16. F. Filbet, E. Sonnendrücker and P. Bertrand, Conservative numerical schemes for the Vlasov equation. J. Comput. Phys. 172 (2001) 166–187. [CrossRef] [MathSciNet]
  17. J. Forest, A. Hilgers, B. Thiebault, L. Eliasson, J.-J. Berthelier and H. de Feraudy, An open-source spacecraft plasma interaction simulation code PicUp3D: tests and validations. IEEE Trans. Plasma Sci. 34 (2006) 2103–2113. [CrossRef]
  18. A. Ghizzo, P. Bertrand, M. Shoucri, T.W. Johnston, E. Filjakow and M.R. Feix, A Vlasov code for the numerical simulation of stimulated Raman scattering. J. Comput. Phys. 90 (1990) 431. [CrossRef] [MathSciNet]
  19. V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik and L. Villard, A drift-kinetic semi-Lagrangian 4D code for ion turbulence simulation. J. Comput. Phys. 217 (2006) 395–423. [CrossRef] [MathSciNet]
  20. R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in Mathematics – ETH-Zurich. Birkhauser-Verlag, Basel, Switzerland (1990).
  21. L. Lévy, Charge des matériaux et systèmes en environnement spatial, CERT–ONERA, in Space environment prevention of risks related to spacecraft charging, Éditions Cepaduès, Toulouse, France (1996).
  22. M.J. Mandell, V.A. Davies and L.G. Mikelides, NASCAP-2K Preliminary Documentation. Science Applications International Corp. San Diego, USA, Scientific rept. no. 2, A555024 (2002).
  23. M.J. Mandell, V.A. Davies, D.L. Cooke, A.T. Wheelock and C.J. Roth, Nascap-2k spacecraft charging code overview. IEEE Trans. Plasma Sci. 34 (2006) 2084–2093. [CrossRef]
  24. A.P. Plokhikh, V.G. Malko and V.A. Semenov, Escape software modeling for the electrostatic charging with electric propulsion in the ionosphere earth. Manuel d'utilisation v-1, Research Institute of Applied Mechanics and Electrodynamics, Moscou, Russia (1998).
  25. J.-F. Roussel, Spacecraft plasma environment and contamination simulation code: description and first tests. J. Spacecr. Rockets 35 (1998) 205–211. [CrossRef]
  26. J.-F. Roussel, Modelling of spacecraft plasma environment interactions, in Spacecraft Charging Technology, Proceedings of the Seventh International Conference held 23–27 April, 2001 at ESTEC, Noordwijk, The Netherlands, R.A. Harris Ed., European Space Agency, ESA SP-476 (2001).
  27. J.F. Roussel, F. Rogier, M. Lemoine, D. Volpert, G. Rousseau, G. Sookahet, P. Sng and A. Hilgers, Design of a new modular spacecraft plasma interaction modeling software (SPIS), in Proceedings of the 8th Spacecraft Charging Tech. Conf., Huntsville, USA, October 20–24 (2003).
  28. M. Shoucri and G. Knorr, Numerical integration of the Vlasov equation. J. Comput. Phys. 14 (1974) 84–92. [CrossRef]
  29. E. Sonnendrücker, Méthodes semi-Lagrangiennes pour la résolution numérique de l'équation de Vlasov, in Lecture notes CEA-EDF-INRIA School on “Modèles numériques pour la fusion contrôlée”, Nice, France (2008).
  30. E. Sonnendrücker, J. Roche, P. Bertrand and A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. J. Comput. Phys. 149 (1999) 201–220. [CrossRef] [MathSciNet]

Recommended for you