Free access
Issue
ESAIM: M2AN
Volume 44, Number 1, January-February 2010
Page(s) 167 - 188
DOI http://dx.doi.org/10.1051/m2an/2009045
Published online 16 December 2009
  1. E.L. Allgower, K. Böhmer, F.A. Potra and W.C. Rheinboldt, A mesh-independence principle for operator equations and their discretizations. SIAM J. Numer. Anal. 23 (1986) 160–169. [CrossRef] [MathSciNet]
  2. W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems. Appl. Math. Opt. 12 (1984) 15–27. [CrossRef]
  3. N. Arada, E. Casas and F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem. Comput. Optim. Appl. 23 (2002) 201–229. [CrossRef] [MathSciNet]
  4. A. Bermúdez, P. Gamallo and R. Rodríguez, Finite element methods in local active control of sound. SIAM J. Control Optim. 43 (2004) 437–465 (electronic). [CrossRef] [MathSciNet]
  5. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems. Springer-Verlag, New York, USA (2000).
  6. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Springer, New York, USA (1994).
  7. E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993–1006. [CrossRef] [MathSciNet]
  8. E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state contraints. ESAIM: COCV 8 (2002) 345–374. [CrossRef] [EDP Sciences]
  9. E. Casas, Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems. Adv. Comput. Math. 26 (2007) 137–153. [CrossRef] [MathSciNet]
  10. E. Casas and M. Mateos, Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints. SIAM J. Control Optim. 40 (2002) 1431–1454. [CrossRef] [MathSciNet]
  11. E. Casas and M. Mateos, Uniform convergence of the FEM. Applications to state constrained control problems. J. Comput. Appl. Math. 21 (2002) 67–100.
  12. J.C. de los Reyes, P. Merino, J. Rehberg and F. Tröltzsch, Optimality conditions for state-constrained PDE control problems with finite-dimensional control space. Control Cybern. (to appear).
  13. M. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal. 45 (2007) 1937–1953. [CrossRef] [MathSciNet]
  14. M. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, Proc. of ENUMATH 2007, Graz, K. Kunisch, G. Of and O. Steinbach Eds., Springer, Berlin-Heidelberg, Germany (2008) 597–604.
  15. A.V. Fiacco and G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons, Inc., New York, USA (1968).
  16. J. Frehse and R. Rannacher, Eine l1-Fehlerabschätzung diskreter Grundlösungen in der Methode der finiten Elemente. Bonner Math. Schriften 89 (1976) 92–114.
  17. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin, Germany (1998).
  18. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, USA (1985).
  19. D. Klatte, A note on quantitative stability results in nonlinear optimization. Seminarbericht 90, Humboldt-Universität zu Berlin, Sektion Mathematik, Germany (1987).
  20. D. Klatte and B. Kummer, Nonsmooth Equations in Optimization: Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Dordrecht, The Netherlands (2002).
  21. D.G. Luenberger, Linear and Nonlinear Programming. Addison Wesley, Reading, Massachusetts, USA (1984).
  22. K. Malanowski, Stability of solutions to convex problems of optimization, Lecture Notes Contr. Inf. Sci. 93, Springer-Verlag, Berlin, Germany (1987).
  23. K. Malanowski, Ch. Büskens and H. Maurer, Convergence of approximations to nonlinear optimal control problems, in Mathematical Programming with Data Perturbations, A.V. Fiacco Ed., Lecture Notes to Pure and Applied Mathematics 195, Marcel Dekker, New York, USA (1998) 253–284.
  24. C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Contr. Cybern. 37 (2008) 51–85.
  25. C. Meyer, U. Prüfert and F. Tröltzsch, On two numerical methods for state-constrained elliptic control problems. Otim. Meth. Software 22 (2007) 871–899.
  26. R. Rannacher, Zur Formula -Konvergenz linearer finiter Elemente beim Dirichlet-Problem. Math. Z. 149 (1976) 69–77. [CrossRef] [MathSciNet]
  27. R. Rannacher and B. Vexler, A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM J. Control Optim. 44 (2005) 1844–1863. [CrossRef] [MathSciNet]
  28. S.M. Robinson, Stability theory for systems of inequalities, II: Differentiable nonlinear systems. SIAM J. Numer. Anal. 13 (1976) 497–513. [CrossRef] [MathSciNet]
  29. S.M. Robinson, Strongly regular generalized equations. Math. Oper. Res. 5 (1980) 43–62. [CrossRef] [MathSciNet]
  30. A. Rösch, Error estimates for linear-quadratic control problems with control constraints. Optim. Methods Softw. 21 (2006) 121–134. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  31. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for finite element methods. Math. Comp. 31 (1977) 414–442. [CrossRef] [MathSciNet]
  32. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods, part II. Math. Comp. 64 (1995) 907–928. [CrossRef] [MathSciNet]
  33. F. Tröltzsch, Optimale Steuerung partieller Differentialgleichungen – Theorie, Verfahren und Anwendungen. Vieweg, Wiesbaden, Germany (2005).
  34. F. Tröltzsch, On finite element error estimates for optimal control problems with elliptic PDEs, in The Proceedings of the Conference on Large Scale Scientific Computing, Sozopol, Bulgaria, June 4–8, 2009, Lect. Notes in Comp. Sci., Springer-Verlag (to appear).
  35. J. Zowe and S. Kurcyusz, Regularity and stability for the mathematical programming problem in Banach spaces. Appl. Math. Optim. 5 (1979) 49–62. [CrossRef] [MathSciNet]

Recommended for you