Free access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 251 - 287
DOI http://dx.doi.org/10.1051/m2an/2010002
Published online 27 January 2010
  1. G. Ansanay-Alex, F. Babik, J.-C. Latché and D. Vola, An L2–stable approximation of the Navier–Stokes advection operator for low-order non-conforming finite elements. IJNMF (to appear).
  2. M. Baudin, Ch. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411–440. [CrossRef] [MathSciNet]
  3. M. Baudin, F. Coquel and Q.-H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914–936 (electronic). [CrossRef] [MathSciNet]
  4. S. Becker, A. Sokolichin and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: Part II. Comparison of detailed experiments and flow simulations. Chem. Eng. Sci. 49 (1994) 5747–5762. [CrossRef]
  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
  6. G. Chanteperdrix, Modélisation et simulation numérique d'écoulements diphasiques à interface libre. Application à l'étude des mouvements de liquides dans les réservoirs de véhicules spatiaux. Energétique et dynamique des fluides, École Nationale Supérieure de l'Aéronautique et de l'Espace, France (2004).
  7. P.G. Ciarlet, Finite elements methods – Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, P. Ciarlet and J.L. Lions Eds., North Holland (1991) 17–351.
  8. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations I. Revue Française d'Automatique, Informatique et Recherche Opérationnelle (R.A.I.R.O.) 3 (1973) 33–75.
  9. K. Deimling, Nonlinear Functional Analysis. Springer, New York, USA (1980).
  10. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–701. [CrossRef]
  11. S. Evje and K.K. Fjelde, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet]
  12. R. Eymard, T. Gallouët, M. Ghilani and R. Herbin, Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563–594. [CrossRef] [MathSciNet]
  13. R. Eymard, T Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis I, P. Ciarlet and J.L. Lions Eds., North Holland (2000) 713–1020.
  14. T. Flåtten and S.T. Munkejord, The approximate Riemann solver of Roe applied to a drift-flux two-phase flow model. ESAIM: M2AN 40 (2006) 735–764. [CrossRef] [EDP Sciences]
  15. T. Gallouet, J.-M. Hérard and N. Seguin, A hybrid scheme to compute contact discontinuities in one dimensional Euler systems. ESAIM: M2AN 36 (2003) 1133–1159. [CrossRef] [EDP Sciences]
  16. T. Gallouët, L. Gastaldo, R. Herbin and J.-C. Latché, An unconditionally stable pressure correction scheme for compressible barotropic Navier-Stokes equations. ESAIM: M2AN 42 (2008) 303–331. [CrossRef] [EDP Sciences] [MathSciNet]
  17. T. Gallouët, R. Herbin and J.-C. Latché, A convergent finite-element volume scheme for the compressible Stokes problem. Part I: The isothermal case. Math. Comp. 78 (2009) 1333–1352. [CrossRef] [MathSciNet]
  18. L. Gastaldo, R. Herbin and J.-C. Latché, A pressure correction scheme for the homogeneous two-phase flow model with two barotropic phases, in Finite Volumes for Complex Applications V – Problems and Perspectives – Aussois, France (2008) 447–454.
  19. L. Gastaldo, R. Herbin and J.-C. Latché, A discretization of the phase mass balance in fractional step algorithms for the drift-flux model. IMA J. Numer. Anal. (2009) doi:10.1093/imanum/drp006.
  20. J.-L. Guermond and L. Quartapelle, A projection FEM for variable density incompressible flows. J. Comput. Phys. 165 (2000) 167–188. [CrossRef] [MathSciNet]
  21. J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows. Comput. Meth. Appl. Mech. Eng. 195 (2006) 6011–6045. [CrossRef] [MathSciNet]
  22. H. Guillard and F. Duval, A Darcy law for the drift velocity in a two-phase flow model. J. Comput. Phys. 224 (2007) 288–313. [CrossRef] [MathSciNet]
  23. F.H. Harlow and A.A. Amsden, A numerical fluid dynamics calculation method for all flow speeds. J. Comput. Phys. 8 (1971) 197–213. [CrossRef]
  24. D. Kuzmin and S. Turek, Numerical simulation of turbulent bubbly flows, in 3rd International Symposium on Two-Phase Flow Modelling and Experimentation, Pisa, 22–24 September (2004).
  25. B. Larrouturou, How to preserve the mass fractions positivity when computing compressible multi-component flows. J. Comput. Phys. 95 (1991) 59–84. [CrossRef] [MathSciNet]
  26. M. Marion and R. Temam, Navier-Stokes equations: Theory and approximation, in Handbook of Numerical Analysis VI, P. Ciarlet and J.L. Lions Eds., North Holland (1998).
  27. J.-M. Masella, I. Faille and T. Gallouët, On an approximate Godunov scheme. Int. J. Comput. Fluid Dyn. 12 (1999) 133–149. [CrossRef] [MathSciNet]
  28. F. Moukalled, M. Darwish and B. Sekar, A pressure-based algorithm for multi-phase flow at all speeds. J. Comput. Phys. 190 (2003) 550–571. [CrossRef]
  29. R. Rannacher and S. Turek, Simple nonconforming quadrilateral Stokes element. Numer. Methods Part. Differ. Equ. 8 (1992) 97–111. [CrossRef] [MathSciNet]
  30. J.E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455–477. [CrossRef] [MathSciNet]
  31. A. Sokolichin and G. Eigenberger, Applicability of the standard k-ε turbulence model to the dynamic simulation of bubble columns: Part I. Detailed numerical simulations. Chem. Eng. Sci. 54 (1999) 2273–2284. [CrossRef]
  32. A. Sokolichin, G. Eigenberger and A. Lapin, Simulation of buoyancy driven bubbly flow: Established simplifications and open questions. AIChE J. 50 (2004) 24–45. [CrossRef]
  33. B. Spalding, Numerical computation of multi-phase fluid flow and heat transfer, in Recent Advances in Numerical Methods in Fluids 1, Swansea, Pineridge Press (1980) 139–168.
  34. P. Wesseling, Principles of computational fluid dynamics, Springer Series in Computational Mathematics 29. Springer (2001).

Recommended for you