Free access
Issue
ESAIM: M2AN
Volume 44, Number 2, March-April 2010
Page(s) 207 - 230
DOI http://dx.doi.org/10.1051/m2an/2009044
Published online 16 December 2009
  1. R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network flows, Theory, algorithms, and applications. Prentice Hall Inc., Englewood Cliffs, USA (1993).
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, USA (2000).
  3. Y. Boykov and V. Kolmogorov, Computing geodesics and minimal surfaces via graph cuts, in International Conference on Computer Vision (2003) 26–33.
  4. Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 1124–1137. [CrossRef] [PubMed]
  5. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford, UK (2002).
  6. A. Chambolle and J. Darbon, On total variation minimization and surface evolution using parametric maximum flows. Int. J. Comput. Vis. 84 (2009) 288–307. [CrossRef]
  7. W.H. Cunningham, On submodular function minimization. Combinatoria 5 (1985) 185–192. [CrossRef]
  8. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, USA (1993).
  9. H. Federer, Geometric measure theory. Springer-Verlag New York Inc., New York, USA (1969).
  10. E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics 80. Birkhäuser Verlag, Basel, Switzerland (1984).
  11. D.M. Greig, B.T. Porteous and A.H. Seheult, Exact maximum a posteriori estimation for binary images. J. R. Statist. Soc. B 51 (1989) 271–279.
  12. S. Iwata, L. Fleischer and S. Fujishige, A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions, in Proceedings of the 32nd annual ACM symposium on Theory of computing, ACM (2000) 97–106.
  13. L. Lovász, Submodular functions and convexity, in Mathematical programming: the state of the art (Bonn, 1982), Springer, Berlin, Germany (1983) 235–257.
  14. J.C. Picard and H.D. Ratliff, Minimum cuts and related problems. Networks 5 (1975) 357–370. [CrossRef] [MathSciNet]
  15. A. Schrijver, A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory (B) 80 (2000) 436–355.
  16. A. Visintin, Nonconvex functionals related to multiphase systems. SIAM J. Math. Anal. 21 (1990) 1281–1304. [CrossRef] [MathSciNet]
  17. A. Visintin, Generalized coarea formula and fractal sets. Japan J. Indust. Appl. Math. 8 (1991) 175–201. [CrossRef] [MathSciNet]

Recommended for you