Free access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 401 - 420
DOI http://dx.doi.org/10.1051/m2an/2010007
Published online 04 February 2010
  1. I. Babuška and J.E. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510–536. [CrossRef] [MathSciNet]
  2. I. Babuška, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients. SIAM J. Numer. Anal. 31 (1994) 945–981. [CrossRef] [MathSciNet]
  3. I. Babuška, U. Banerjee and J. Osborn, On principles for the selection of shape functions for the generalized finite element method. Comput. Methods Appl. Mech. Engrg. 191 (2002) 5595–5629. [CrossRef] [MathSciNet]
  4. I. Babuška, U. Banerjee and J.E. Osborn, Generalized finite element methods – main ideas, results and perspective. Int. J. Comp. Meths. 1 (2004) 67–103. [CrossRef]
  5. J.K. Bennighof and R.B. Lehoucq, An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput. 25 (2004) 2084–2106. [CrossRef] [MathSciNet]
  6. F. Bourquin, Component mode synthesis and eigenvalues of second order operators: Discretization and algorithm. ESAIM: M2AN 26 (1992) 385–423.
  7. F. Brezzi and L. Marini, Augmented spaces, two-level methods, and stabilizing subgrids. Int. J. Numer. Meth. Fluids 40 (2002) 31–46. [CrossRef]
  8. R.R. Craig, Jr. and M.C.C. Bampton, Coupling of substructures for dynamic analysis. AIAA J. 6 (1968) 1313–1319. [CrossRef]
  9. Y. Efendiev and T. Hou, Multiscale Finite Element Methods: Theory and Applications, Surveys and Tutorials in the Applied Mathematical Sciences 4. Springer, New York, USA (2009).
  10. U. Hetmaniuk and R.B. Lehoucq, Multilevel methods for eigenspace computations in structural dynamics, in Domain Decomposition Methods in Science and Engineering, Lect. Notes Comput. Sci. Eng. 55, Springer-Verlag (2007) 103–114.
  11. T. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134 (1997) 169–189. [CrossRef] [MathSciNet]
  12. W.C. Hurty, Vibrations of structural systems by component-mode synthesis. J. Eng. Mech. Division ASCE 86 (1960) 51–69.
  13. J. Nolen, G. Papanicolaou and O. Pironneau, A framework for adaptive multiscale methods for elliptic problems. Multiscale Model. Simul. 7 (2008) 171–196. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  14. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations – Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, UK (1999).

Recommended for you