Free access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 485 - 508
DOI http://dx.doi.org/10.1051/m2an/2010010
Published online 04 February 2010
  1. M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation. SIAM J. Numer. Anal. 45 (2007) 1777–1798 (electronic). [CrossRef] [MathSciNet]
  2. M. Ainsworth, A posteriori error estimation for lowest order Raviart-Thomas mixed finite elements. SIAM J. Sci. Comput. 30 (2009) 189–204. [CrossRef]
  3. M. Ainsworth and J.T. Oden, A Posterior Error Estimation in Finite Element Analysis. Wiley, New York, USA (2000).
  4. D.G. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [CrossRef] [MathSciNet]
  5. I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44 (1984) 75–102. [CrossRef] [MathSciNet]
  6. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comput. 44 (1985) 283–301. [CrossRef] [MathSciNet]
  7. R. Becker, P. Hansbo and M.G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Meth. Appl. Mech. Engrg. 192 (2003) 723–733. [CrossRef] [MathSciNet]
  8. P. Binev, W. Dahmen and R. DeVore, Adaptive finite element methods with convergence rates. Numer. Math. 97 (2004) 219–268. [CrossRef] [MathSciNet]
  9. S. Cochez and S. Nicaise, A posteriori error estimators based on equilibrated fluxes. CMAM (to appear).
  10. S. Cochez-Dhondt and S. Nicaise, Equilibrated error estimators for discontinuous Galerkin methods. Numer. Meth. PDE 24 (2008) 1236–1252. [CrossRef]
  11. M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627–649. [CrossRef] [EDP Sciences]
  12. W. Dörfler, A convergent adaptive algorithm for Poisson's equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. [CrossRef] [MathSciNet]
  13. A. Ern and A.F. Stephansen, A posteriori energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods. J. Comput. Math. 26 (2008) 488–510. [MathSciNet]
  14. A. Ern, S. Nicaise and M. Vohralík, An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems. C. R. Math. Acad. Sci. Paris 345 (2007) 709–712. [CrossRef] [MathSciNet]
  15. A. Ern, A.F. Stephansen and P. Zunino, A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29 (2009) 235–256. [CrossRef] [MathSciNet]
  16. A. Ern, A.F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous galerkin a posteriori error estimates for convection-diffusion-reaction problems. JCAM (to appear).
  17. P. Houston, I. Perugia and D. Schötzau, Energy norm a posteriori error estimation for mixed discontinuous Galerkin approximations of the Maxwell operator. Comput. Meth. Appl. Mech. Engrg. 194 (2005) 499–510. [CrossRef]
  18. O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet]
  19. O.A. Karakashian and F. Pascal, Convergence of adaptive discontinuous Galerkin approximations of second-order elliptic problems. SIAM J. Numer. Anal. 45 (2007) 641–665 (electronic). [CrossRef] [MathSciNet]
  20. K.Y. Kim, A posteriori error analysis for locally conservative mixed methods. Math. Comp. 76 (2007) 43–66 (electronic). [CrossRef] [MathSciNet]
  21. K.Y. Kim, A posteriori error estimators for locally conservative methods of nonlinear elliptic problems. Appl. Numer. Math. 57 (2007) 1065–1080. [CrossRef] [MathSciNet]
  22. P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485–509. [CrossRef] [MathSciNet]
  23. K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43 (2005) 1803–1827 (electronic). [CrossRef] [MathSciNet]
  24. P. Morin, R.H. Nochetto and K.G. Siebert, Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38 (2000) 466–488 (electronic). [CrossRef] [MathSciNet]
  25. P. Morin, R.H. Nochetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658 (electronic). [Revised reprint of “Data oscillation and convergence of adaptive FEM”. SIAM J. Numer. Anal. 38 (2001) 466–488 (electronic).] [CrossRef] [MathSciNet]
  26. B. Rivière and M. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems. Comput. Math. Appl. 46 (2003) 141–163. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  27. D. Schötzau and L. Zhu, A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations. Appl. Numer. Math. 59 (2009) 2236–2255. [CrossRef] [MathSciNet]
  28. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester-Stuttgart (1996).

Recommended for you