Free access
Volume 44, Number 3, May-June 2010
Page(s) 509 - 529
Published online 04 February 2010
  1. G. Berkooz, P. Holmes and J.L. Lumley, Turbulence, Coherent Structures, Dynamical Systems and SymmetryCambridge Monographes in Mechanics. Cambridge Universtity Press, UK (1996).
  2. T. Bui-Thanh, Model-constrained optimization methods for reduction of parameterized systems. Ph.D. Thesis, MIT, USA (2007).
  3. T. Bui-Thanh, M. Damodoran and K. Willcox, Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal 42 (2004) 1505–1516. [CrossRef]
  4. T. Bui-Thanh, K. Willcox, O. Ghattas and B. van Bloemen Wanders, Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput Phys. 224 (2007) 880–896. [CrossRef] [MathSciNet]
  5. R. Everson and L. Sirovich, The Karhunen-Loeve procedure for gappy data. J. Opt. Soc. Am. 12 (1995) 1657–1664. [CrossRef]
  6. K. Fukunaga, Introduction to Statistical Recognition. Academic Press, New York, USA (1990).
  7. M.A. Grepl, Y. Maday, N.C. Nguyen and A.T. Patera, Efficient reduced-basis treatment of affine and nonlinear partial differential equations. ESAIM: M2AN 41 (2007) 575–605. [CrossRef] [EDP Sciences] [MathSciNet]
  8. M. Heinkenschloss, Formulation and Analysis of a Sequential Quadratic Programming Method for the Optimal Dirichlet Boundary Control of Navier Stokes Flow – Optimal Control: Theory, Methods and Applications. Kluwer Academic Publisher, B.V. (1998) 178–203.
  9. M. Hinze and K. Kunisch, Second order methods for optimal control of time – Dependent fluid flow. SIAM J. Contr. Optim. 40 (2001) 925–946. [CrossRef] [MathSciNet]
  10. K. Ito and S.S. Ravindran, A reduced-order method for simulation and control of fluid flows. J. Comput. Phys. 143 (1998) 403–425. [CrossRef] [MathSciNet]
  11. T. Kato, Perturbation Theory for Linear Operators. Springer Verlag, Germany (1980).
  12. K. Kunisch and S. Volkwein, Control of Burgers' equation by reduced order approach using proper orthogonal decomposition. J. Optim. Theory Appl. 102 (1999) 345–371. [CrossRef] [MathSciNet]
  13. K. Kunisch and S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems. Numer. Math. 90 (2001) 117–148. [CrossRef] [MathSciNet]
  14. S. Lall, J.E. Marsden and S. Glavaski, Empirical model reduction of controlled nonlinear systems, in Proceedings of the IFAC Congress, Vol. F (1999) 473–478.
  15. H.V. Ly and H.T. Tran, Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly Appl. Math. 60 (2002) 631–656.
  16. J. Nocedal and S.J. Wright, Numerical Optimization, Springer Series in Operation Research. Second Edition, Springer Verlag, New York, USA (2006).
  17. M. Rathinam and L.R. Petzold, A new look at proper orthogonal decomposition. SIAM J. Numer. Anal. 41 (2003) 1893–1925. [CrossRef] [MathSciNet]
  18. S.S. Ravindran, Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM J. Sci. Comput. 23 (2002) 1924–1942. [CrossRef] [MathSciNet]
  19. C.W. Rowley, Model reduction for fluids using balanced proper orthogonal decomposition. Int. J. Bifur. Chaos 15 (2005) 997–1013. [CrossRef]
  20. G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: Application to transport and continuum mechanics. Arch. Comput. Method. E. 15 (2008) 229–275. [CrossRef] [MathSciNet]
  21. R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics. Second edition, Springer, Berlin, Germany (1997).
  22. K. Willcox, O. Ghattas, B. von Bloemen Wanders and W. Bader, An optimization framework for goal-oriented, model-based reduction of large-scale systems, in 44th IEEE Conference on Decision and Control, Sevilla, Spain (2005).

Recommended for you