Free access
Issue
ESAIM: M2AN
Volume 44, Number 3, May-June 2010
Page(s) 421 - 454
DOI http://dx.doi.org/10.1051/m2an/2010008
Published online 04 February 2010
  1. J.L. Auriault and H. Ene, Macroscopic modelling of heat transfer in composites with interfacial thermal barrier. International J. Heat Mass Transfer 37 (1994) 2885–2892. [CrossRef]
  2. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978).
  3. S. Brahim-Otsman, G.A. Francfort and F. Murat, Correctors for the homogenization of the wave and heat equations. J. Math. Pures Appl. 8 (1992) 197–231.
  4. M. Briane, A. Damlamian and P. Donato, H-convergence in Perforated Domains, in Nonlinear Partial Differential Equations and Their Applications – Collège de France Seminar XIII, D. Cioranescu and J.L. Lions Eds., Pitman Research Notes in Mathematics Series 391, Longman, New York, USA (1998) 62–100.
  5. H.S. Carslaw and J.C. Jaeger, Conduction of heat in solids. The Clarendon Press, Oxford, UK (1947).
  6. D. Cioranescu and P. Donato, Homogénéisation du problème de Neumann non homogène dans des ouverts perforés. Asymptot. Anal. 1 (1988) 115–138.
  7. D. Cioranescu and P. Donato, Exact internal controllability in perforated domains. J. Math. Pures Appl. 68 (1989) 185–213. [MathSciNet]
  8. D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications 17. Oxford Univ. Press, New York, USA (1999).
  9. D. Cioranescu and J. Saint Jean Paulin, Homogenization in open sets with holes. J. Math. Anal. Appl. 71 (1979) 590–607. [CrossRef] [MathSciNet]
  10. D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures. Springer-Verlag, New York (1999).
  11. D. Cioranescu, P. Donato, F. Murat and E. Zuazua, Homogenization and corrector for the wave equation in domains with small holes. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1999) 251–293.
  12. P. Donato, Some corrector results for composites with imperfect interface. Rend. Math. Ser. VII 26 (2006) 189–209.
  13. P. Donato and S. Monsurrò, Homogenization of two heat conductors with an interfacial contact resistance. Anal. Appl. 2 (2004) 1–27. [CrossRef]
  14. P. Donato and A. Nabil, Approximate controllability of linear parabolic equations in perforated domains. ESAIM: COCV 6 (2001) 21–38. [CrossRef] [EDP Sciences]
  15. P. Donato and A. Nabil, Homogenization and correctors for the heat equation in perforated domains. Chin. Ann. Math. B 25 (2004) 143–156. [CrossRef]
  16. P. Donato, A. Gaudiello and L. Sgambati, Homogenization of bounded solutions of elliptic equations with quadratic growth in periodically perforated domains. Asymptot. Anal. 16 (1998) 223–243. [MathSciNet]
  17. P. Donato, L. Faella and S. Monsurrò, Homogenization of the wave equation in composites with imperfect interface: a memory effect. J. Math. Pures Appl. 87 (2007) 119–143. [CrossRef] [MathSciNet]
  18. P. Donato, L. Faella and S. Monsurrò, Correctors for the homogenization of a class of hyperbolic equations with imperfect interfaces. SIAM J. Math. Anal. 40 (2009) 1952–1978. [CrossRef]
  19. L. Faella and S. Monsurrò, Memory Effects Arising in the Homogenization of Composites with Inclusions, Topics on Mathematics for Smart Systems. World Sci. Publ., Hackensack, USA (2007) 107–121.
  20. H.K. Hummel, Homogenization for heat transfer in polycrystals with interfacial resistances. Appl. Anal. 75 (2000) 403–424. [CrossRef] [MathSciNet]
  21. E. Jose, Homogenization of a parabolic problem with an imperfect interface. Rev. Roumaine Math. Pures Appl. 54 (2009) 189–222. [MathSciNet]
  22. J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Volume 1. Dunod, Paris, France (1968).
  23. R. Lipton, Heat conduction in fine scale mixtures with interfacial contact resistance . SIAM J. Appl. Math. 58 (1998) 55–72. [CrossRef] [MathSciNet]
  24. R. Lipton and B. Vernescu, Composite with imperfect interface. Proc. Soc. Lond. A 452 (1996) 329–358. [CrossRef]
  25. M.L. Mascarenhas, Linear homogenization problem with time dependent coefficient. Trans. Amer. Math. Soc. 281 (1984) 179–195. [CrossRef] [MathSciNet]
  26. S. Monsurrò, Homogenization of a two-component composite with interfacial thermal barrier. Adv. Math. Sci. Appl. 13 (2003) 43–63. [MathSciNet]
  27. S. Monsurrò, Erratum for the paper “Homogenization of a two-component composite with interfacial thermal barrier” (in Vol. 13, pp. 43–63, 2003). Adv. Math. Sci. Appl. 14 (2004) 375–377. [MathSciNet]
  28. S.E. Pastukhova, Homogenization of nonstationary problems in the theory of elasticity on thin periodic structures from the standpoint of the convergence of hyperbolic semigroups in a variable Hilbert space. Sovrem. Mat. Prilozh. 16, Differ. Uravn. Chast. Proizvod. (2004) 64–97 (Russian). Translation in J. Math. Sci. (N. Y.) 133 (2006) 949–998.
  29. R.E. Showalter, Distributed microstructure models of porous media, in Flow in porous media (Oberwolfach (1992)), J. Douglas and U. Hornung Eds., Internat. Ser. Numer. Math. 114, Birkhäuser, Basel, Switzerland (1993) 155–163.
  30. L. Tartar, Cours Peccot. Collège de France, France, unpublished (1977).
  31. L. Tartar, Quelques remarques sur l'homogénéisation, in Functional Analysis and Numerical Analysis, Proc. Japan-France Seminar 1976, Japanese Society for the Promotion of Science (1978) 468–482.
  32. L. Tartar, Memory effects and homogenization. Arch. Rational Mech. Anal. 3 (1990) 121–133. [CrossRef] [MathSciNet]

Recommended for you