Free access
Issue
ESAIM: M2AN
Volume 44, Number 4, July-August 2010
Page(s) 627 - 646
DOI http://dx.doi.org/10.1051/m2an/2010022
Published online 17 March 2010
  1. G. Amberg, Semi sharp phase-field method for quantitative phase change simulations. Phys. Rev. Lett. 91 (2003) 265505–265509. [CrossRef] [PubMed]
  2. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz and R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57 (2009) 941–971. [CrossRef]
  3. J.T. Beale and A.J. Majda, Vortex methods. I. Convergence in three dimensions. Math. Comp. 39 (1982) 1–27. [CrossRef] [MathSciNet]
  4. W.J. Boettinger, J.A. Warren, C. Beckermann and A. Karma, Phase field simulation of solidification. Ann. Rev. Mater. Res. 32 (2002) 163–194. [CrossRef]
  5. E. Burman and J. Rappaz, Existence of solutions to an anisotropic phase-field model. Math. Methods Appl. Sci. 26 (2003) 1137–1160. [CrossRef] [MathSciNet]
  6. E. Cances, F. Legoll and G. Stolz, Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: M2AN 41 (2007) 351–389. [CrossRef] [EDP Sciences]
  7. A. De Masi, E. Orlandi, E. Presutti and L. Triolo, Glauber evolution with the Kac potentials. I. Mesoscopic and macroscopic limits, interface dynamics. Nonlinearity 7 (1994) 633–696. [CrossRef] [MathSciNet]
  8. W. E and W. Ren, Heterogeneous multiscale method for the modeling of complex fluids and micro-fluidics. J. Comput. Phys. 204 (2005) 1–26. [CrossRef] [MathSciNet]
  9. D. Frenkel and B. Smit, Understanding Molecular Simulation. Academic Press (2002).
  10. J. Gooodman, K.-S. Moon, A. Szepessy, R. Tempone and G. Zouraris, Stochastic Differential Equations: Models and Numerics. http://www.math.kth.se/~szepessy/sdepde.pdf.
  11. R.J. Hardy, Formulas for determining local properties in molecular dynamics: shock waves. J. Chem. Phys. 76 (1982) 622–628. [CrossRef]
  12. J.J. Hoyt, M. Asta and A. Karma, Atomistic and continuum modeling of dendritic solidification. Mat. Sci. Eng. R 41 (2003) 121–163. [CrossRef]
  13. J.H. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18 (1950) 817–829. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  14. L.P. Kadanoff, Statistical physics: statics, dynamics and renormalization. World Scientific (2000).
  15. A. Karma and W.J. Rappel, Phase-field model of dendritic side branching with thermal noise. Phys Rev. E 60 (1999) 3614–3625. [CrossRef]
  16. M. Katsoulakis and A. Szepessy, Stochastic hydrodynamical limits of particle systems. Comm. Math. Sciences 4 (2006) 513–549.
  17. P.R. Kramer and A.J. Majda, Stochastic mode reduction for particle-based simulation methods for complex microfluid systems. SIAM J. Appl. Math. 64 (2003) 401–422. [MathSciNet]
  18. H. Kroemer and C. Kittel, Thermal Physics. W.H. Freeman Company (1980).
  19. L.D. Landau and E.M. Lifshitz, Statistical Physics Part 1. Pergamon Press (1980).
  20. T.M. Liggett, Interacting particle systems. Springer-Verlag, Berlin (2005).
  21. S. Mas-Gallic and P.-A. Raviart, A particle method for first-order symmetric systems. Numer. Math. 51 (1987) 323–352. [CrossRef] [MathSciNet]
  22. G. Morandi, F. Napoli and E. Ercolessi, Statistical Mechanics: An Intermediate Course. World Scientific Publishing (2001).
  23. E. Nelson, Dynamical Theories of Brownian Motion. Princeton University Press (1967).
  24. S.G. Pavlik and R.J. Sekerka, Forces due to fluctuations in the anisotropic phase-field model of solidification. Physica A 268 (1999) 283–290. [CrossRef]
  25. T. Schlick, Molecular modeling and simulation. Springer-Verlag (2002).
  26. H.M. Soner, Convergence of the phase-field equations to the Mullins-Sekerka Problem with kinetic undercooling. Arch. Rat. Mech. Anal. 131 (1995) 139–197. [CrossRef]
  27. A. Szepessy, R. Tempone and G. Zouraris, Adaptive weak approximation of stochastic differential equations. Comm. Pure Appl. Math. 54 (2001) 1169–1214.
  28. N.G. van Kampen, Stochastic Processes in Physics and Chemistry. North-Holland (1981).
  29. E. von Schwerin, A Stochastic Phase-Field Model Computed From Coarse-Grained Molecular Dynamics. arXiv:0908.1367, included in [30].
  30. E. von Schwerin, Adaptivity for Stochastic and Partial Differential Equations with Applications th Phase Transformations. Ph.D. Thesis, KTH, Royal Institute of Technology, Stockholm, Sweden (2007).

Recommended for you