Free access
Issue
ESAIM: M2AN
Volume 44, Number 4, July-August 2010
Page(s) 647 - 670
DOI http://dx.doi.org/10.1051/m2an/2010014
Published online 23 February 2010
  1. P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data. Comput. Aided Geom. Design 1 (1984) 169–181. [CrossRef]
  2. B. Berge, Electrocapillarité et mouillage de films isolants par l'eau. C. R. Acad. Sci. Paris Ser. II 317 (1993) 157.
  3. S. Bouchereau, Modelling and numerical simulation of electrowetting. Ph.D. Thesis, Université Grenoble I, France (1997) [in French].
  4. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Series in Computational Mathematics 15. Springer-Verlag (1991).
  5. D. Bucur and G. Butazzo, Variational methods in shape optimization problems. Birkhaüser, Boston, USA (2005).
  6. J. Buehrle, S. Herminghaus and F. Mugele, Interface profile near three phase contact lines in electric fields. Phys. Rev. Lett. 91 (2003) 086101. [CrossRef] [PubMed]
  7. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542–1570. [CrossRef] [MathSciNet]
  8. P. Ciarlet, Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559–586. [CrossRef] [MathSciNet]
  9. P. Ciarlet, Jr. and J. He, The Singular Complement Method for 2d problems. C. R. Acad. Sci. Paris Ser. I 336 (2003) 353–358.
  10. P. Ciarlet, Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358–365.
  11. P. Ciarlet, Jr., F. Lefèvre, S. Lohrengel and S. Nicaise, Weighted regularization for composite materials in electromagnetism. ESAIM: M2AN 44 (2010) 75–108. [CrossRef] [EDP Sciences]
  12. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis II, P.G. Ciarlet and J.-L. Lions Eds., Elsevier, North Holland (1991) 17–351.
  13. M. Costabel and M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93 (2002) 239–277. [CrossRef] [MathSciNet]
  14. M. Costabel, M. Dauge, D. Martin and G. Vial, Weighted Regularization of Maxwell Equations – Computations in Curvilinear Polygons, in Proceedings of Enumath'01, held in Ischia, Italy (2002).
  15. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Mod. Meth. Appl. Sci. 7 (1997) 957–991. [CrossRef] [MathSciNet]
  16. V. Girault and P.-A. Raviart, Finite element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin, Germany (1986).
  17. A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique, Mathematics and Applications 48. Springer-Verlag (2005) [in French].
  18. S. Kaddouri, Solution to the electrostatic potential problem in singular (prismatic or axisymmetric) domains. A multi-scale study in quasi-singular domains. Ph.D. Thesis, École Polytechnique, France (2007) [in French].
  19. P. Monk, Finite Elements Methods for Maxwell's equations. Oxford Science Publications, UK (2003).
  20. F. Mugele and J.C. Baret, Electrowetting: From basics to applications. J. Phys., Condens. Matter 17 (2005) R705–R774.
  21. F. Murat and J. Simon, Sur le contrôle optimal par un domaine géométrique. Publication du Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), France (1976).
  22. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet]
  23. S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993).
  24. S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395–450. [CrossRef] [MathSciNet]
  25. A. Papathanasiou and A. Boudouvis, A manifestation of the connection between dielectric breakdown strength and contact angle saturation in electrowetting. Appl. Phys. Lett. 86 (2005) 164102. [CrossRef]
  26. C. Quilliet and B. Berge, Electrowetting: a recent outbreak. Curr. Opin. Colloid In. 6 (2001) 34–39. [CrossRef]
  27. F. Rapetti, Higher order variational discretizations on simplices: applications to numerical electromagnetics. Habilitation à Diriger les Recherches, Université de Nice, France (2008) [in French].
  28. C. Scheid, Theoretical and numerical analysis in the vicinity of the triple point in Electrowetting. Ph.D. Thesis, Université Grenoble I, France (2007) [in French].
  29. C. Scheid and P. Witomski, A proof of the invariance of the contact angle in electrowetting. Math. Comp. Model. 49 (2009) 647–665. [CrossRef]
  30. T. Sorokina and A.J. Worsey, A multivariate Powell-Sabin interpolant. Adv. Comput. Math. 29 (2008) 71–89. [CrossRef] [MathSciNet]
  31. M. Vallet, M. Vallade and B. Berge, Limiting phenomena for the spreading of water on polymer films by electrowetting. Eur. Phys. J. B. 11 (1999) 583. [CrossRef] [EDP Sciences]
  32. H. Verheijen and M. Prins, Reversible electrowetting and trapping of charge: model and experiments. Langmuir 15 (1999) 6616. [CrossRef]
  33. A.J. Worsey and B. Piper, A trivariate Powell-Sabin interpolant. Comp. Aided Geom. Design 5 (1988) 177–186. [CrossRef]

Recommended for you