Free access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 885 - 920
DOI http://dx.doi.org/10.1051/m2an/2010046
Published online 26 August 2010
  1. F. Bernardin, M. Bossy, C. Chauvin, P. Drobinski, A. Rousseau and T. Salameh, Stochastic downscaling methods: application to wind refinement. Stoch. Environ. Res. Risk. Assess. 23 (2009) 851–859. [CrossRef]
  2. M. Bossy, J.-F. Jabir and D. Talay, On conditional McKean Lagrangian stochastic models. Research report RR-6761, INRIA, France (2008) http://hal.inria.fr/inria-00345524/en/.
  3. M. Bossy, J. Fontbona and J.-F. Jabir, Incompressible Lagrangian stochastic model in the torus. In preparation.
  4. J.A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system. Math. Meth. Appl. Sci. 21 (1998) 907–938. [CrossRef]
  5. C. Cercignani, The Boltzmann equation and its applications, Applied Mathematical Sciences 67. Springer-Verlag, New York (1988).
  6. C. Chauvin, S. Hirstoaga, P. Kabelikova, F. Bernardin and A. Rousseau, Solving the uniform density constraint in a downscaling stochastic model. ESAIM: Proc. 24 (2008) 97–110. [CrossRef]
  7. C. Chauvin, F. Bernardin, M. Bossy and A. Rousseau, Wind simulation refinement: some new challenges for particle methods, in Springer Mathematics in Industry series, ECMI (to appear).
  8. P. Degond, Global existence of smooth solutions for the Vlasov-Fokker-Planck equation in 1 and 2 space dimensions. Ann. Sci. École Norm. Sup. 19 (1986) 519–542.
  9. P. Degond and S. Mas-Gallic, Existence of solutions and diffusion approximation for a model Fokker-Planck equation. Internal report, École Polytechnique, Palaiseau, France (1985).
  10. M. Di Francesco and A. Pascucci, On a class of degenerate parabolic equations of Kolmogorov type. AMRX Appl. Math. Res. Express 3 (2005) 77–116. [CrossRef]
  11. M. Di Francesco and S. Polidoro, Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form. Adv. Diff. Equ. 11 (2006) 1261–1320.
  12. P. Drobinski, J.L. Redelsperger and C. Pietras, Evaluation of a planetary boundary layer subgrid-scale model that accounts for near-surface turbulence anisotropy. Geophys. Res. Lett. 33 (2006) L23806. [CrossRef]
  13. C.W. Gardiner, Handbook of stochastic methods, Springer Series in Synergetics 13. Second edition, Springer-Verlag (1985).
  14. J.-L. Guermond and L. Quartapelle, Calculation of incompressible viscous flows by an unconditionally stable projection FEM. J. Comput. Phys. 132 (1997) 12–33. [CrossRef] [MathSciNet]
  15. F.H. Harlow and P.I. Nakayama, Transport of turbulence energy decay rate. Technical report (1968) 451.
  16. J.-F. Jabir, Lagrangian Stochastic Models of conditional McKean-Vlasov type and their confinements. Ph.D. Thesis, University of Nice-Sophia-Antipolis, France (2008).
  17. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag, New York (1988).
  18. A. Lachal, Les temps de passage successifs de l'intégrale du mouvement brownien. Ann. I.H.P. Probab. Stat. 33 (1997) 1–36. [CrossRef]
  19. E. Lanconelli, A. Pascucci and S. Polidoro, Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance, in Nonlinear problems in mathematical physics and related topics, Int. Math. Ser., Kluwer/Plenum, New York (2002) 243–265.
  20. H.P. McKean, Jr, A winding problem for a resonator driven by a white noise. J. Math. Kyoto Univ. 2 (1963) 227–235. [MathSciNet]
  21. J.-P. Minier and E. Peirano, The pdf approach to turbulent polydispersed two-phase flows. Phys. Rep. 352 (2001) 1–214. [CrossRef] [MathSciNet]
  22. B. Mohammadi and O. Pironneau, Analysis of the k-epsilon turbulence model. Masson, Paris (1994).
  23. C.M. Mora, Weak exponential schemes for stochastic differential equations with additive noise. IMA J. Numer. Anal. 25 (2005) 486–506. [CrossRef] [MathSciNet]
  24. T. Plewa, T. Linde and V.G. Weirs Eds., Adaptive Mesh Refinement – Theory and Applications, Lecture Notes in Computational Science and Engineering 41. Springer, Chicago (2003).
  25. S.B. Pope, P.D.F. methods for turbulent reactive flows. Prog. Energy Comb. Sci. 11 (1985) 119–192. [CrossRef]
  26. S.B. Pope, On the relationship between stochastic Lagrangian models of turbulence and second-moment closures. Phys. Fluids 6 (1993) 973–985. [CrossRef]
  27. S.B. Pope, Lagrangian pdf methods for turbulent flows. Annu. Rev. Fluid Mech. 26 (1994) 23–63. [CrossRef]
  28. S.B. Pope, Turbulent flows. Cambridge Univ. Press, Cambridge (2003).
  29. P.-A. Raviart, An analysis of particle methods, in Numerical methods in fluid dynamics, Lecture Notes in Mathematics 1127, Springer, Berlin (1985) 243–324.
  30. J.L. Redelsperger, F. Mahé and P. Carlotti, A simple and general subgrid model suitable both for surface layer and free-stream turbulence. Bound. Layer Meteor. 101 (2001) 375–408. [CrossRef]
  31. A. Rousseau, F. Bernardin, M. Bossy, P. Drobinski and T. Salameh, Stochastic particle method applied to local wind simulation, in Proc. IEEE International Conference on Clean Electrical Power (2007) 526–528.
  32. P. Sagaut, Large eddy simulation for incompressible flows – An introduction. Scientific Computation, Springer-Verlag, Berlin (2001).
  33. D.W. Stroock and S.R. Varadhan, Multidimensional diffusion processes. Springer-Verlag, Berlin (1979).
  34. R.B. Stull, An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Kluwer Academic Publishers (1988).
  35. A.-S. Sznitman, Topics in propagation of chaos, in École d'Été de Probabilités de Saint-Flour XIX – 1989, Lecture Notes in Mathematics 1464, Springer, Berlin (1991) 165–251.

Recommended for you