Free access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 921 - 945
DOI http://dx.doi.org/10.1051/m2an/2010047
Published online 26 August 2010
  1. C. Baehr, Modélisation probabiliste des écoulements atmosphériques turbulents afin d'en filtrer la mesure par approche particulaire. Ph.D. Thesis University of Toulouse III – Paul Sabatier, Toulouse Mathematics Institute, France (2008).
  2. C. Baehr and F. Legland, Some Mean-Field Processes Filtering using Particles System Approximations. In preparation.
  3. C. Baehr and O. Pannekoucke, Some issues and results on the EnKF and particle filters for meteorological models, in Chaotic Systems: Theory and Applications, C.H. Skiadas and I. Dimotikalis Eds., World Scientific (2010).
  4. G. BenArous, Flots et séries de Taylor stochastiques. Probab. Theor. Relat. Fields 81 (1989) 29–77. [CrossRef]
  5. M. Bossy and D. Talay, Convergence rate for the approximation of the limit law of weakly interacting particles. 2: Application to the Burgers equation. Ann. Appl. Prob. 6 (1996) 818–861. [CrossRef]
  6. B. Busnello and F. Flandoli and M. Romito, A probabilistic representation for the vorticity of a 3d viscous fluid and for general systems of parabolic equations. Proc. Edinb. Math. Soc. 48 (2005) 295–336. [CrossRef] [MathSciNet]
  7. P. Constantin and G. Iyer, A stochastic Lagrangian representation of 3-dimensional incompressible Navier-Stokes equations. Commun. Pure Appl. Math. 61 (2008) 330–345. [CrossRef]
  8. S. Das and P. Durbin, A Lagrangian stochastic model for dispersion in stratified turbulence. Phys. Fluids 17 (2005) 025109. [CrossRef]
  9. P. Del Moral, Feynman-Kac Formulae, Genealogical and Interacting Particle Systems with Applications. Springer-Verlag (2004).
  10. U. Frisch, Turbulence. Cambridge University Press, Cambridge (1995).
  11. G. Iyer and J. Mattingly, A stochastic-Lagrangian particle system for the Navier-Stokes equations. Nonlinearity 21 (2008) 2537–2553. [CrossRef] [MathSciNet]
  12. I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus. Springer-Verlag (1988).
  13. S. Méléard, Asymptotic behaviour of some particle systems: McKean Vlasov and Boltzmann models, in Probabilistic Models for Nonlinear Partial Differential Equations, Lecture Notes in Math. 1627, Springer-Verlag (1996).
  14. R. Mikulevicius and B. Rozovskii, Stochastic Navier-Stokes Equations for turbulent flows. SIAM J. Math. Anal. 35 (2004) 1250–1310. [CrossRef] [MathSciNet]
  15. S.B. Pope, Turbulent Flows. Cambridge University Press, Cambridge (2000).
  16. A.S. Sznitman, Topics in propagation of chaos, in École d'Eté de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math. 1464, Springer-Verlag (1991).

Recommended for you