Free access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1107 - 1133
DOI http://dx.doi.org/10.1051/m2an/2010054
Published online 26 August 2010
  1. V. Bally and G. Pagès, Error analysis of the quantization algorithm for obstacle problems. Stochastic Processes their Appl. 106 (2003) 1–40.
  2. V. Bally and G. Pagès, A quantization algorithm for solving multi dimensional discrete-time optional stopping problems. Bernoulli 6 (2003) 1003–1049. [CrossRef] [MathSciNet]
  3. D. Becherer, Bounded solutions to backward SDE's with jumps for utility optimization and indifference pricing. Ann. Appl. Prob. 16 (2006) 2027–2054. [CrossRef]
  4. J.M. Bismut, Théorie probabiliste du contrôle des diffusions, Mem. Amer. Math. Soc. 176. Providence, Rhode Island (1973).
  5. B. Bouchard and N. Touzi, Discrete time approximation and Monte Carlo simulation for Backward Stochastic Differential Equations. Stochastic Processes their Appl. 111 (2004) 175–206. [CrossRef]
  6. B. Bouchard, I. Ekeland and N. Touzi, On the Malliavin approach to Monte Carlo methods of conditional expectations. Financ. Stoch. 8 (2004) 45–71. [CrossRef]
  7. P. Briand and Y. Hu, BSDE with quadratic growth and unbounded terminal value. Probab. Theor. Relat. Fields 136 (2006) 604–618. [CrossRef]
  8. K.-T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula. Ann. Math. 65 (1957) 163–178. [CrossRef] [MathSciNet]
  9. P. Cheridito, M. Soner, N. Touzi and N. Victoir, Second-order backward stochastic differential equations and fully non linear parabolic pdes. Commun. Pure Appl. Math. 60 (2007) 1081–1110. [CrossRef] [MathSciNet]
  10. D. Crisan and K. Manolarakis, Numerical solution for a BSDE using the Cubature method. Preprint available at http://www2.imperial.ac.uk/ dcrisan/ (2007).
  11. D. Crisan, K. Manolarakis and N. Touzi, On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights. Stochastic Processes their Appl. 120 (2010) 1133–1158. [CrossRef]
  12. J. Cvitanic and I. Karatzas, Hedging contingent claims with constrained portfolios. Ann. Appl. Prob. 3 (1993) 652–681. [CrossRef]
  13. D. Duffy and L. Epstein, Asset pricing with stochastic differential utility. Rev. Financ. Stud. 5 (1992) 411–436. [CrossRef]
  14. D. Duffy and L. Epstein, Stochastic differential utility. Econometrica 60 (1992) 353–394. [CrossRef] [MathSciNet]
  15. N. El Karoui and S.J. Huang, A general result of existence and uniqueness of backward stochastic differential equations, in Backward Stochastic Differential Equations, N. El Karoui and L. Mazliak Eds., Longman (1996).
  16. N. El Karoui and M. Quenez, Dynamic programming and pricing of contigent claims in incomplete markets. SIAM J. Contr. Opt. 33 (1995) 29–66. [CrossRef]
  17. N. El Karoui and M. Quenez, Non linear pricing theory and Backward Stochastic Differential Equations, in Financial Mathematics 1656, Springer (1995) 191–246.
  18. N. El Karoui, C. Kapoudjan, E. Pardoux, S. Peng and M.C. Quenez, Reflected solutions of backward SDEs and related obstacle problems. Annals Probab. 25 (1997) 702–737. [CrossRef] [MathSciNet]
  19. N. El Karoui, E. Pardoux and M. Quenez, Reflected backward SDEs and American Options, in Numerical Methods in Finance, Chris Rogers and Denis Talay Eds., Cambridge University Press, Cambridge (1997).
  20. N. El Karoui, S. Peng and M. Quenez, Backward Stochastic Differential Equations in finance. Mathematical Finance 7 (1997) 1–71. [CrossRef] [MathSciNet]
  21. R. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20 (1948) 367–387. [CrossRef] [MathSciNet]
  22. H. Föllmer and A. Schied, Convex measures of risk and trading constraints. Financ. Stoch. 6 (2002) 429–447. [CrossRef]
  23. P. Friz and N. Victoir, Multidimensional Stochastic Processes as Rough Paths: Theory and applications. Cambridge studies in advanced mathematics, Cambridge University Press, Cambridge (2010).
  24. E. Gobet and C. Labart, Error expansion for the discretization of Backward Stochastic Differential Equations. Stochastic Processes their Appl. 117 (2007) 803–829. [CrossRef]
  25. E. Gobet, J.P. Lemor and X. Warin, A regression based Monte Carlo method to solve Backward Stochastic Differential Equations. Ann. Appl. Prob. 15 (2005) 2172–2202. [CrossRef]
  26. E. Gobet, J.P. Lemor and X. Warin, Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations. Bernoulli 12 (2006) 889–916. [CrossRef] [MathSciNet]
  27. E. Jouini and H. Kallal, Arbitrage in securities markets with short sales constraints. Mathematical Finance 5 (1995) 178–197.
  28. M. Kac, On distributions of certain Wiener functionals. Trans. Amer. Math. Soc. 65 (1949) 1–13. [CrossRef] [MathSciNet]
  29. I. Karatzas and S. Schreve, Brownian Motion and Stochastic Calculus. Springer Verlag, New York (1991).
  30. M. Kobylanski, Backward Stochastic Differential Equations and Partial Differential Equations. Ann. Appl. Prob. 28 (2000) 558–602.
  31. J.-P. Lepeltier and J. San Martin, Backward Stochastic Differential Equations with continuous coefficients. Stat. Probab. Lett. 32 (1997) 425–430. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  32. F. Longstaff and E.S. Schwartz, Valuing American options by simulation: a simple least squares approach. Rev. Financ. Stud. 14 (2001) 113–147. [CrossRef]
  33. T. Lyons and Z. Qian, System Control and Rough Paths. Oxford Science publication, Oxford University Press, Oxford (2002).
  34. T. Lyons and N. Victoir, Cubature on Wiener space. Proc. Royal Soc. London 468 (2004) 169–198.
  35. T. Lyons, M. Caruana and T. Levy, Differential Equations Driven by Rough Paths, Lecture Notes in Mathematics 1908. Springer (2004).
  36. J. Ma and J. Zhang, Representation theorems for Backward Stochastic Differential Equations. Ann. Appl. Prob. 12 (2002) 1390–1418. [CrossRef]
  37. J. Ma and J. Zhang, Representation and regularities for solutions to BSDEs with reflections. Stochastic Processes their Appl. 115 (2005) 539–569. [CrossRef]
  38. J. Ma, P. Protter and J. Yong, Solving Forward-Backward SDEs expicitly – A four step scheme. Probab. Theor. Relat. Fields 122 (1994) 163–190.
  39. D. Nualart, The Malliavin calculus and related topics. Springer-Verlag (1996).
  40. E. Pardoux and S. Peng, Adapted solution to Backward Stochastic Differential Equations. Syst. Contr. Lett. 14 (1990) 55–61. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  41. E. Pardoux and S. Peng, Backward Stochastic Differential Equations and quasi linear parabolic partial differential equations, in Lecture Notes in Control and Information Sciences 176, Springer, Berlin/Heidelberg (1992) 200–217.
  42. E. Pardoux and S. Tang, Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theor. Relat. Fields 114 (1999) 123–150. [CrossRef]
  43. S. Peng, Backward SDEs and related g-expectations, in Pitman Research Notes in Mathematics Series 364, Longman, Harlow (1997) 141–159.
  44. S. Peng, Non linear expectations non linear evaluations and risk measures 1856. Springer-Verlag (2004).
  45. S. Peng, Modelling derivatives pricing mechanisms with their generating functions. Preprint, arxiv:math/0605599v1 (2006).
  46. E. Rosazza Giannin, Risk measures via g expectations. Insur. Math. Econ. 39 (2006) 19–34. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  47. S. Tang and X. Li, Necessary conditions for optimal control of stochastic systems with random jumps. SIAM J. Contr. Opt. 32 (1994) 1447–1475. [CrossRef] [MathSciNet]
  48. J. Zhang, Some fine properties of backward stochastic differential equations. Ph.D. Thesis, Purdue University, USA (2001).
  49. J. Zhang, A numerical scheme for BSDEs. Ann. Appl. Prob. 14 (2004) 459–488. [CrossRef] [MathSciNet]

Recommended for you