Free access
Issue
ESAIM: M2AN
Volume 44, Number 5, September-October 2010
Special Issue on Probabilistic methods and their applications
Page(s) 1049 - 1068
DOI http://dx.doi.org/10.1051/m2an/2010051
Published online 26 August 2010
  1. A.M. Anile and O. Muscato, Improved hydrodynamical model for carrier transport in semiconductors. Phys. Rev. B 51 (1995) 16728–16740. [CrossRef]
  2. V. Borsari and C. Jacoboni, Monte Carlo calculations on electron transport in CdTe. Phys. Stat. Sol. (B) 54 (1972) 649–662.
  3. W. Fawcett, A.D. Boardman and S. Swain, Monte Carlo determination of electron transport properties in gallium arsenide. J. Phys. Chem. Solids 31 (1970) 1963–1990. [CrossRef]
  4. M.V. Fischetti and S.E. Laux, Monte Carlo analysis of electron transport in small semiconductor devices including band-structure and space-charge effects. Phys. Rev. B 38 (1988) 9721–9745. [CrossRef]
  5. C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulation. Springer, New York (1989).
  6. C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Modern Phys. 55 (1983) 645–705. [CrossRef]
  7. C. Jungemann and B. Meinerzhagen, Hierarchical Device Simulation. The Monte-Carlo Perspective. Springer, Wien (2003).
  8. S.E. Laux, M.V. Fischetti, Numerical aspects and implementation of the DAMOCLES Monte Carlo device simulation program, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 1–26.
  9. J.M. Miranda, C. Lin, M. Shaalan, H.L. Hartnagel and J.L. Sebastian, Influence of the minimization of self-scattering events on the Monte Carlo simulation of carrier transport in III-V semiconductors. Semicond. Sci. Technol. 14 (1999) 804–808. [CrossRef]
  10. O. Muscato and W. Wagner, Time step truncation in direct simulation Monte Carlo for semiconductors. Compel 24 (2005) 1351–1366. [MathSciNet]
  11. U. Ravaioli, Vectorization of Monte Carlo algorithms for semiconductor simulation, in Monte Carlo Device Simulation: Full Band and Beyond, K. Hess Ed., Kluwer, Boston (1991) 267–284.
  12. H.D. Rees, Calculation of steady state distribution functions by exploiting stability. Phys. Lett. A 26 (1968) 416–417. [CrossRef]
  13. H.D. Rees, Calculation of distribution functions by exploiting the stability of the steady state. J. Phys. Chem. Solids 30 (1969) 643–655. [CrossRef]
  14. S. Rjasanow and W. Wagner, Stochastic Numerics for the Boltzmann Equation. Springer, Berlin (2005).
  15. E. Sangiorgi, B. Ricco and F. Venturi, MOS2: an efficient Monte Carlo simulator for MOS devices. IEEE Trans. Computer-Aided Des. 7 (1988) 259–271. [CrossRef]
  16. V. Sverdlov, E. Ungersboeck, H. Kosina and S. Selberherr, Current transport models for nanoscale semiconductor devices. Mater. Sci. Eng. R 58 (2008) 228–270. [CrossRef]
  17. R.M. Yorston, Free-flight time generation in the Monte Carlo simulation of carrier transport in semiconductors. J. Comput. Phys. 64 (1986) 177–194. [CrossRef]

Recommended for you