Free access
Volume 44, Number 6, November-December 2010
Page(s) 1255 - 1277
Published online 17 March 2010
  1. B. Blanke and P. Delecluse, Variability of the tropical atlantic ocean simulated by a general circulation model with two different mixed-layer physics. J. Phys. Oceanogr. 23 (1993) 1363–1388. [CrossRef]
  2. J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the l2 projection in h1. Math. Comp. 7 (2001) 147–156. [CrossRef] [MathSciNet]
  3. H. Burchard, Applied turbulence modelling in marine water. Ph.D. Thesis, University of Hambourg, Germany (2004).
  4. P. Gaspar, Y. Gregoris and J.-M. Lefevre, A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: test at Station Papa and long-term upper ocean study site. J. Geophys. Res. 16 (1990) 179–193.
  5. P.R. Gent, The heat budget of the toga-coare domain in an ocean model. J. Geophys. Res. 96 (1991) 3323–3330.
  6. H. Goosse, E. Deleersnijder, T. Fichefet and M.H. England, Sensitivity of a global coupled ocean-sea ice model to the parametrization of vertical mixing. J. Geophys. Res. 104 (1999) 13681–13695. [CrossRef]
  7. J.H. Jones, Vertical mixing in the equatorial undercurrent. J. Phys. Oceanogr. 3 (1973) 286–296. [CrossRef]
  8. Z. Kowalik and T.S. Murty, Numerical modeling of ocean dynamics. World Scientific (1993).
  9. W.G. Large, C. McWilliams and S.C. Doney, Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parametrization. Rev. Geophys. 32 (1994) 363–403. [CrossRef]
  10. G. Madec, P. Delecluse, M. Imbard and C. Levy, OPA version 8.0, Ocean General Circulation Model Reference Manual. LODYC, Int. Rep. 97/04 (1997).
  11. M. McPhaden, The tropical atmosphere ocean (tao) array is completed. Bull. Am. Meteorol. Soc. 76 (1995) 739–741.
  12. G. Mellor and T. Yamada, Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys. 20 (1982) 851–875. [NASA ADS] [CrossRef]
  13. R.C. Pacanowski and S.G.H. Philander, Parametrization of vertical mixing in numericals models of the tropical oceans. J. Phys. Oceanogr. 11 (1981) 1443–1451. [CrossRef]
  14. J. Pedloski, Geophysical fluid dynamics. Springer (1987).
  15. M. Potier-Ferry, The linearization principle for the stability of solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 77 (1981) 301–320. [CrossRef]
  16. A.R. Robinson, An investigation into the wind as the cause of the equatiorial undercurrent. J. Mar. Res. 24 (1966) 179–204.

Recommended for you