Free access
Issue
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
Page(s) 1155 - 1191
DOI http://dx.doi.org/10.1051/m2an/2010019
Published online 23 February 2010
  1. R.A. Adams, Sobolev spaces. Academic Press (1975).
  2. G. Allaire, Homogeneization of the Navier-Stokes equations with slip boundary conditions. Comm. Pure Appl. Math. 44 (1991) 605–641. [CrossRef] [MathSciNet]
  3. M. Azaïez, F. Ben Belgacem, C. Bernardi and N. Chorfi, Spectral discretization of Darcy's equations with pressure dependent porosity. Report 2009-10, Laboratoire Jacques-Louis Lions, France (2009).
  4. I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179–192. [CrossRef]
  5. W. Bangerth, R. Hartman and G. Kanschat, deal.II – a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007) 24. [CrossRef]
  6. J. Berg and J. Löfström, Interpolation spaces: An introduction, Comprehensive Studies in Mathematics 223. Springer-Verlag (1976).
  7. D. Boffi, F. Brezzi, L. Demkowicz, R. Durán, R. Falk and M. Fortin, Mixed finite elements, compatibility conditions, and applications, Lecture Notes in Mathematics 939. Springer-Verlag, Berlin, Germany (2008).
  8. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods, Texts in applied mathematics 15. Third edition, Springer-Verlag (2008).
  9. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO Anal. Numér. R2 (1974) 129–151.
  10. F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics. Springer-Verlag, New York (1991).
  11. F. Brezzi, J. Rappaz and P.-A. Raviart, Finite dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions. Numer. Math. 36 (1980) 1–25. [CrossRef] [MathSciNet]
  12. P.-G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 17–351.
  13. D. Cioranescu, P. Donato and H.I. Ene, Homogeneization of the Stokes problem with non-homogeneous boundary conditions. Math. Appl. Sci. 19 (1996) 857–881. [CrossRef]
  14. H. Darcy, Les fontaines publiques de la ville de Dijon. Victor Dalmont, Paris, France (1856).
  15. J. Douglas and T. Dupont, A Galerkin method for a nonlinear Dirichlet problem. Math. Comp. 29 (1975) 689–696. [CrossRef] [MathSciNet]
  16. H.I. Ene and E. Sanchez-Palencia, Équations et phénomènes de surface pour l'écoulement dans un modèle de milieu poreux. J. Mécanique 14 (1975) 73–108.
  17. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer-Verlag, New York, USA (2004).
  18. G.B. Folland, Real analysis, modern techniques and their applications. Second edition, Wiley Interscience (1999).
  19. P. Forchheimer, Wasserbewegung durch Boden. Z. Ver. Deutsh. Ing. 45 (1901) 1782–1788.
  20. V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations – Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin, Germany (1986).
  21. V. Girault and M.F. Wheeler, Numerical discretization of a Darcy-Forchheimer model. Numer. Math. 110 (2008) 161–198. [CrossRef] [MathSciNet]
  22. V. Girault, R. Nochetto and L.R. Scott, Maximum-norm stability of the finite-element Stokes projection. J. Math. Pure. Appl. 84 (2005) 279–330.
  23. P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics 24. Pitman, Boston, USA (1985).
  24. F. Hecht, A. Le Hyaric, O. Pironneau and K. Ohtsuka, Freefem++. Second Edition, Version 2.24-2-2. Laboratoire J.-L. Lions, UPMC, Paris, France (2008).
  25. A.Ya. Helemskii, Lectures and exercises on functional analysis, Translations of Mathematical Monographs 233. American Mathematical Society, USA (2006).
  26. L.V. Kantorovich and G.P. Akilov, Functional analysis. Third edition, Nauka (1984) [in Russian].
  27. D. Kim and E.J. Park, Primal mixed finite-element approximation of elliptic equations with gradient nonlinearities. Comput. Math. Appl. 51 (2006) 793–804. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  28. J.L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris, France (1968).
  29. E.J. Park, Mixed finite element methods for nonlinear second order elliptic problems. SIAM J. Numer. Anal. 32 (1995) 865–885. [CrossRef] [MathSciNet]
  30. S.E. Pastukhova, Substantiation of the Darcy Law for a porous medium with condition of partial adhesion. Sbornik Math. 189 (1998) 1871–1888. [CrossRef]
  31. K.R. Rajagopal, On a hierarchy of approximate models for flows of incompressible fluids through porous solids. M3AS 17 (2007) 215–252.
  32. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid methods in Handbook of Numerical Analysis II: Finite Element Methods (Part 1), P.G. Ciarlet and J.L. Lions Eds., Amsterdam, North-Holland (1991) 523–639.
  33. J. Schöberl and W. Zulehner, Symmetric indefinite preconditioners for saddle point problems with applications to pde-constrained optimization problems. SIAM J. Matrix Anal. Appl. 29 (2007) 752–773. [CrossRef] [MathSciNet]
  34. E. Skjetne and J.L. Auriault, Homogeneization of wall-slip gas flow through porous media. Transp. Porous Media 36 (1999) 293–306. [CrossRef] [MathSciNet]
  35. L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the Unione Matematica Italiana 3. Springer-Verlag, Berlin-Heidelberg (2007).
  36. W. Zulehner, Analysis of iterative methods for saddle point problems: a unified approach. Math. Comp. 71 (2001) 479–505. [CrossRef]

Recommended for you