Free access
Issue
ESAIM: M2AN
Volume 44, Number 6, November-December 2010
Page(s) 1279 - 1293
DOI http://dx.doi.org/10.1051/m2an/2010026
Published online 17 March 2010
  1. D. Bouche, J.-M. Ghidaglia and F. Pascal, Error estimate and the geometric corrector for the upwind finite volume method applied to the linear advection equation. SIAM J. Numer. Anal. 43 (2005) 578–603. [CrossRef] [MathSciNet]
  2. D. Bouche, J.-M. Ghidaglia and F. Pascal, An optimal a priori error analysis of the finite volume method for linear convection problems, in Finite volumes for complex applications IV, Problems and perspectives , F. Benkhaldoun, D. Ouazar and S. Raghay Eds., Hermes Science publishing, London, UK (2005) 225–236.
  3. B. Cockburn, P.-A. Gremaud and J.X. Yang, A priori error estimates for numerical methods for scalar conservation laws. III: Multidimensional flux-splitting monotone schemes on non-cartesian grids. SIAM J. Numer. Anal. 35 (1998) 1775–1803. [CrossRef] [MathSciNet]
  4. L. Comtet, Advanced combinatorics – The art of finite and infinite expansions. D. Reidel Publishing Co., Dordrecht, The Netherlands (1974).
  5. F. Delarue and F. Lagoutière, Probabilistic analysis of the upwind scheme for transport equations. Arch. Ration. Mech. Anal. (to appear).
  6. B. Després, An explicit a priori estimate for a finite volume approximation of linear advection on non-cartesian grids. SIAM J. Numer. Anal. 42 (2004) 484–504. [CrossRef] [MathSciNet]
  7. B. Després, Lax theorem and finite volume schemes. Math. Comp. 73 (2004) 1203–1234.
  8. G.P. Egorychev, Integral representation and the computation of combinatorial sums, Translations of Mathematical Monographs 59. American Mathematical Society, Providence, USA (1984). [Translated from the Russian by H.H. McFadden, Translation edited by Lev J. Leifman.]
  9. R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis 7, P.-A. Ciarlet and J.-L. Lions Eds., North-Holland (2000) 713–1020.
  10. W. Feller, An introduction to probability theory and its applications I. Third edition, John Wiley & Sons Inc., New York, USA (1968).
  11. S. Karlin, A first course in stochastic processes. Academic Press, New York, USA (1966).
  12. D. Kröner, Numerical schemes for conservation laws. Wiley-Teubner Series Advances in Numerical Mathematics, Chichester: Wiley (1997).
  13. V. Lakshmikantham and D. Trigiante, Theory of difference equations: numerical methods and applications, 2nd edition, Monographs and Textbooks in Pure and Applied Mathematics 251. Marcel Dekker Inc., New York, USA (2002).
  14. T.A. Manteuffel and A.B. White, Jr., The numerical solution of second order boundary value problems on nonuniform meshes. Math. Comput. 47 (1986) 511–535. [CrossRef] [MathSciNet]
  15. B. Merlet, l and l2 error estimate for a finite volume approximation of linear advection. SIAM J. Numer. Anal. 46 (2009) 124–150. [CrossRef]
  16. B. Merlet and J. Vovelle, Error estimate for the finite volume scheme applied to the advection equation. Numer. Math. 106 (2007) 129–155. [CrossRef] [MathSciNet]
  17. F. Pascal, On supra-convergence of the finite volume method. ESAIM: Proc. 18 (2007) 38–47. [CrossRef]
  18. T.E. Peterson, A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation. SIAM J. Numer. Anal. 28 (1991) 133–140. [CrossRef] [MathSciNet]
  19. M. Renault, Lost (and found) in translation, André's actual method and its application to the generalized ballot problem. Amer. Math. Monthly 115 (2008) 358–363. [MathSciNet]
  20. A. Tikhonov and A. Samarskij, Homogeneous difference schemes on non-uniform nets. U.S.S.R. Comput. Math. Math. Phys. 1963 (1964) 927–953.
  21. J.-P. Vila and P. Villedieu, Convergence of an explicit finite volume scheme for first order symmetric systems. Numer. Math. 94 (2003) 573–602. [CrossRef] [MathSciNet]
  22. J. Vovelle, Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains. Numer. Math. 90 (2002) 563–596. [CrossRef] [MathSciNet]
  23. B. Wendroff and A.B. White, Jr., Some supraconvergent schemes for hyperbolic equations on irregular grids, in Nonlinear hyperbolic equations – Theory, computation methods, and applications (Aachen, 1988), Notes Numer. Fluid Mech. 24, Vieweg, Braunschweig, Germany (1989) 671–677.
  24. B. Wendroff and A.B. White, Jr., A supraconvergent scheme for nonlinear hyperbolic systems. Comput. Math. Appl. 18 (1989) 761–767. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  25. H.S. Wilf, generatingfunctionology. Third edition, A K Peters Ltd., Wellesley, USA (2006).

Recommended for you