Free access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 39 - 89
DOI http://dx.doi.org/10.1051/m2an/2010030
Published online 15 April 2010
  1. F. Antoci, Some necessary and some sufficient conditions for the compactness of the embedding of weighted Sobolev spaces. Ric. Mat. 52 (2003) 55–71.
  2. A. Arnold, P. Markowich, G. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck equations. Comm. PDE 26 (2001) 43–100. [CrossRef]
  3. J.W. Barrett and R. Nürnberg, Convergence of a finite-element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet]
  4. J.W. Barrett and E. Süli, Existence of global weak solutions to some regularized kinetic models of dilute polymers. Multiscale Model. Simul. 6 (2007) 506–546. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  5. J.W. Barrett and E. Süli, Existence of global weak solutions to dumbbell models for dilute polymers with microscopic cut-off. Math. Models Methods Appl. Sci. 18 (2008) 935–971. [CrossRef] [MathSciNet] [PubMed]
  6. J.W. Barrett and E. Süli, Numerical approximation of corotational dumbbell models for dilute polymers. IMA J. Numer. Anal. 29 (2009) 937–959. [CrossRef] [MathSciNet]
  7. J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Models Methods Appl. Sci. 15 (2005) 939–983. [CrossRef] [MathSciNet]
  8. R. Bird, C. Curtiss, R. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. John Wiley and Sons, New York (1987).
  9. S. Bobkov and M. Ledoux, From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities. Geom. Funct. Anal. 10 (2000) 1028–1052. [CrossRef] [MathSciNet]
  10. J. Brandts, S. Korotov, M. Křížek and J. Šolc, On nonobtuse simplicial partitions. SIAM Rev. 51 (2009) 317–335. [CrossRef] [MathSciNet]
  11. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, Berlin (1991).
  12. S. Cerrai, Second-order PDEs in Finite and Infinite Dimension, Lecture Notes in Mathematics 1762. Springer-Verlag, Berlin (2001).
  13. P. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).
  14. P. Constantin, Nonlinear Fokker–Planck Navier–Stokes systems. Commun. Math. Sci. 3 (2005) 531–544. [MathSciNet]
  15. G. Da Prato and A. Lunardi, Elliptic operators with unbounded drift coefficients and Neumann boundary condition. J. Differ. Equ. 198 (2004) 35–52. [CrossRef]
  16. L. Desvillettes and C. Villani, On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: the linear Fokker–Planck equation. Comm. Pure Appl. Math. 54 (2001) 1–42. [CrossRef] [MathSciNet]
  17. Q. Du, C. Liu and P. Yu, FENE dumbbell models and its several linear and nonlinear closure approximations. Multiscale Model. Simul. 4 (2005) 709–731. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  18. W. E, T.J. Li and P.-W. Zhang, Well-posedness for the dumbbell model of polymeric fluids. Com. Math. Phys. 248 (2004) 409–427.
  19. A.W. El-Kareh and L.G. Leal, Existence of solutions for all Deborah numbers for a non-Newtonian model modified to include diffusion. J. Non-Newton. Fluid Mech. 33 (1989) 257–287. [CrossRef]
  20. D. Eppstein, J.M. Sullivan and A. Üngör, Tiling space and slabs with acute tetrahedra. Comput. Geom. 27 (2004) 237–255. [CrossRef] [MathSciNet]
  21. G. Grün and M. Rumpf, Nonnegativity preserving numerical schemes for the thin film equation. Numer. Math. 87 (2000) 113–152. [CrossRef] [MathSciNet]
  22. J.G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. I: Regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal. 19 (1982) 275–311. [CrossRef] [MathSciNet]
  23. J.-I. Itoh and T. Zamfirescu, Acute triangulations of the regular dodecahedral surface. European J. Combin. 28 (2007) 1072–1086. [CrossRef] [MathSciNet]
  24. B. Jourdain, T. Lelièvre and C. Le Bris, Existence of solution for a micro-macro model of polymeric fluid: the FENE model. J. Funct. Anal. 209 (2004) 162–193. [CrossRef] [MathSciNet]
  25. B. Jourdain, T. Lelièvre, C. Le Bris and F. Otto, Long-time asymptotics of a multiscle model for polymeric fluid flows. Arch. Rat. Mech. Anal. 181 (2006) 97–148. [CrossRef] [MathSciNet]
  26. D. Knezevic and E. Süli, Spectral Galerkin approximation of Fokker–Planck equations with unbounded drift. ESAIM: M2AN 43 (2009) 445–485. [CrossRef] [EDP Sciences]
  27. D. Knezevic and E. Süli, A heterogeneous alternating-direction method for a micro-macro dilute polymeric fluid model. ESAIM: M2AN 43 (2009) 1117–1156. [CrossRef] [EDP Sciences]
  28. S. Korotov and M. Křížek, Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001) 724–733. [CrossRef] [MathSciNet]
  29. S. Korotov and M. Křížek, Global and local refinement techniques yielding nonobtuse tetrahedral partitions. Comput. Math. Appl. 50 (2005) 1105–1113. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  30. A. Kufner, Weighted Sobolev Spaces. Teubner, Stuttgart (1980).
  31. T. Lelièvre, Modèles multi-échelles pour les fluides viscoélastiques. Ph.D. Thesis, École National des Ponts et Chaussées, Marne-la-Vallée, France (2004).
  32. T. Li and P.-W. Zhang, Mathematical analysis of multi-scale models of complex fluids. Commun. Math. Sci. 5 (2007) 1–51. [MathSciNet]
  33. T. Li, H. Zhang and P.-W. Zhang, Local existence for the dumbbell model of polymeric fuids. Comm. Partial Differ. Equ. 29 (2004) 903–923. [CrossRef]
  34. F.-H. Lin, C. Liu and P. Zhang, On a micro-macro model for polymeric fluids near equilibrium. Comm. Pure Appl. Math. 60 (2007) 838–866. [CrossRef] [MathSciNet]
  35. P.-L. Lions and N. Masmoudi, Global existence of weak solutions to some micro-macro models. C. R. Math. Acad. Sci. Paris 345 (2007) 15–20. [CrossRef] [MathSciNet]
  36. L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups. Chapman & Hall/CRC, Boca Raton (2007).
  37. A. Lozinski, C. Chauvière, J. Fang and R.G. Owens, Fokker–Planck simulations of fast flows of melts and concentrated polymer solutions in complex geometries. J. Rheol. 47 (2003) 535–561. [CrossRef]
  38. A. Lozinski, R.G. Owens and J. Fang, A Fokker–Planck-based numerical method for modelling non-homogeneous flows of dilute polymeric solutions. J. Non-Newton. Fluid Mech. 122 (2004) 273–286. [CrossRef]
  39. N. Masmoudi, Well posedness of the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math. 61 (2008) 1685–1714. [CrossRef] [MathSciNet]
  40. F. Otto and A. Tzavaras, Continuity of velocity gradients in suspensions of rod-like molecules. Comm. Math. Phys. 277 (2008) 729–758. [CrossRef] [MathSciNet]
  41. M. Renardy, An existence theorem for model equations resulting from kinetic theories of polymer solutions. SIAM J. Math. Anal. 22 (1991) 1549–151.
  42. J.D. Schieber, Generalized Brownian configuration field for Fokker–Planck equations including center-of-mass diffusion. J. Non-Newton. Fluid Mech. 135 (2006) 179–181. [CrossRef]
  43. W.H.A. Schilders and E.J.W. ter Maten, Eds., Numerical Methods in Electromagnetics, Handbook of Numerical Analysis XIII. Amsterdam, North-Holland (2005).
  44. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pur. Appl. 146 (1987) 65–96.
  45. R. Temam, Navier–Stokes Equations – Theory and Numerical Analysis, Studies in Mathematics and its Applications 2. Third Edition, Amsterdam, North-Holland (1984).
  46. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators. Second Edition, Johann Ambrosius Barth Publ., Heidelberg/Leipzig (1995).
  47. P. Yu, Q. Du and C. Liu, From micro to macro dynamics via a new closure approximation to the FENE model of polymeric fluids. Multiscale Model. Simul. 3 (2005) 895–917. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]

Recommended for you