Free access
Issue
ESAIM: M2AN
Volume 45, Number 1, January-February 2011
Page(s) 169 - 200
DOI http://dx.doi.org/10.1051/m2an/2010036
Published online 24 June 2010
  1. E. Audusse, A multilayer Saint-Venant system: Derivation and numerical validation. Discrete Contin. Dyn. Syst. Ser. B 5 (2005) 189–214. [CrossRef] [MathSciNet]
  2. E. Audusse and M.O. Bristeau, Transport of pollutant in shallow water flows: A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389–416. [CrossRef] [EDP Sciences]
  3. E. Audusse and M.O. Bristeau, A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. Comput. Phys. 206 (2005) 311–333. [CrossRef] [MathSciNet]
  4. E. Audusse and M.O. Bristeau, Finite-volume solvers for a multilayer Saint-Venant system. Int. J. Appl. Math. Comput. Sci. 17 (2007) 311–319. [CrossRef] [MathSciNet]
  5. E. Audusse, F. Bouchut, M.O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for Shallow Water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet]
  6. E. Audusse, M.O. Bristeau and A. Decoene, Numerical simulations of 3d free surface flows by a multilayer Saint-Venant model. Int. J. Numer. Methods Fluids 56 (2008) 331–350. [CrossRef]
  7. A.J.C. Barré de Saint-Venant, Théorie du mouvement non permanent des eaux avec applications aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154.
  8. F. Bouchut, An introduction to finite volume methods for hyperbolic conservation laws. ESAIM: Proc. 15 (2004) 107–127.
  9. F. Bouchut and T. Morales de Luna, An entropy satisfying scheme for two-layer shallow water equations with uncoupled treatment. ESAIM: M2AN 42 (2008) 683–698. [CrossRef] [EDP Sciences]
  10. F. Bouchut and M. Westdickenberg, Gravity driven shallow water models for arbitrary topography. Commun. Math. Sci. 2 (2004) 359–389. [MathSciNet]
  11. M.O. Bristeau and J. Sainte-Marie, Derivation of a non-hydrostatic shallow water model; Comparison with Saint-Venant and Boussinesq systems. Discrete Contin. Dyn. Syst. Ser. B 10 (2008) 733–759.
  12. M.J. Castro, J.A. García-Rodríguez, J.M. González-Vida, J. Macías, C. Parés and M.E. Vázquez-Cendón, Numerical simulation of two-layer shallow water flows through channels with irregular geometry. J. Comput. Phys. 195 (2004) 202–235. [CrossRef] [MathSciNet]
  13. M.J. Castro, J. Macías and C. Parés, A q-scheme for a class of systems of coupled conservation laws with source term. application to a two-layer 1-D shallow water system. ESAIM: M2AN 35 (2001) 107–127. [CrossRef] [EDP Sciences]
  14. A. Decoene and J.-F. Gerbeau, Sigma transformation and ALE formulation for three-dimensional free surface flows. Int. J. Numer. Methods Fluids 59 (2009) 357–386. [CrossRef]
  15. A. Decoene, L. Bonaventura, E. Miglio and F. Saleri, Asymptotic derivation of the section-averaged shallow water equations for river hydraulics. M3AS 19 (2009) 387–417.
  16. S. Ferrari and F. Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography. ESAIM: M2AN 38 (2004) 211–234. [CrossRef] [EDP Sciences]
  17. FreeFem++ home page, http://www.freefem.org/ff++/index.htm (2009).
  18. J.-F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; Numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102.
  19. P.L. Lions, Mathematical Topics in Fluid Mechanics, Incompressible models, Vol. 1. Oxford University Press, UK (1996).
  20. F. Marche, Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B, Fluids 26 (2007) 49–63.
  21. B. Mohammadi, O. Pironneau and F. Valentin, Rough boundaries and wall laws. Int. J. Numer. Methods Fluids 27 (1998) 169–177. [CrossRef]
  22. O. Nwogu, Alternative form of Boussinesq equations for nearshore wave propagation. J. Waterw. Port Coast. Ocean Eng. ASCE 119 (1993) 618–638. [CrossRef]
  23. D.H. Peregrine, Long waves on a beach. J. Fluid Mech. 27 (1967) 815–827. [CrossRef]
  24. B. Perthame, Kinetic formulation of conservation laws. Oxford University Press, UK (2002).
  25. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet]
  26. M.J. Salençon and J.M. Thébault, Simulation model of a mesotrophic reservoir (Lac de Pareloup, France): Melodia, an ecosystem reservoir management model. Ecol. model. 84 (1996) 163–187. [CrossRef]
  27. N.J. Shankar, H.F. Cheong and S. Sankaranarayanan, Multilevel finite-difference model for three-dimensional hydrodynamic circulation. Ocean Eng. 24 (1997) 785–816. [CrossRef]
  28. F. Ursell, The long wave paradox in the theory of gravity waves. Proc. Cambridge Phil. Soc. 49 (1953) 685–694. [CrossRef]
  29. M.A. Walkley, A numerical Method for Extended Boussinesq Shallow-Water Wave Equations. Ph.D. Thesis, University of Leeds, UK (1999).

Recommended for you