Free access
Issue
ESAIM: M2AN
Volume 45, Number 4, July-August 2011
Page(s) 779 - 802
DOI http://dx.doi.org/10.1051/m2an/2010102
Published online 21 February 2011
  1. I. Babuška and A.K. Aziz, Survey Lectures on the Mathematical Foundations of the Finite Element Method. Academic Press, New York (1972) 3–359.
  2. I. Babuska and G.N. Gatica, On the mixed finite element method with Lagrange multipliers. Numer. Methods Partial Differ. Equ. 19 (2003) 192–210. [CrossRef] [MathSciNet]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991).
  4. F. Brezzi, W.W. Hager and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities. Numer. Math. 28 (1977) 431–443. [CrossRef] [MathSciNet]
  5. C. Carstensen, Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16 (1993) 819–835. [CrossRef] [MathSciNet]
  6. C. Carstensen and J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34 (1997) 1845–1864. [CrossRef] [MathSciNet]
  7. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology 4. Springer (1990).
  8. G. Duvaut and J. Lions, Inequalities in Mechanics and Physics. Springer, Berlin (1976).
  9. I. Ekeland and R. Temam, Analyse Convexe et Problèmes Variationnels. Études mathématiques, Dunod, Gauthier-Villars, Paris-Bruxelles-Montreal (1974).
  10. R.S. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comput. 28 (1974) 963–971. [CrossRef] [MathSciNet]
  11. G. Gatica and W. Wendland, Coupling of mixed finite elements and boundary elements for linear and nonlinear elliptic problems. Appl. Anal. 63 (1996) 39–75. [CrossRef] [MathSciNet]
  12. R. Glowinski, J.-L. Lions and R. Trémolières, Numerical Analysis of Variational Inequalities, Studies in Mathematics and its Applications 8. North-Holland Publishing Co., Amsterdam-New York (1981).
  13. I. Hlaváček, J. Haslinger, J. Nečas and J. Lovišek, Solution of Variational Inequalities in Mechanics, Applied Mathematical Sciences 66. Springer-Verlag (1988).
  14. L. Hörmander, Linear Partial Differential Operators. Springer-Verlag, Berlin (1969).
  15. N. Kikuchi and J. Oden, Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988).
  16. D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and their Applications. Academic Press (1980).
  17. J. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, Berlin (1972).
  18. J.E. Roberts and J.M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 523–639.
  19. Z.-H. Zhong, Finite Element Procedures for Contact-Impact Problems. Oxford University Press (1993).

Recommended for you