Free access
Issue
ESAIM: M2AN
Volume 45, Number 6, November-December 2011
Page(s) 1163 - 1192
DOI http://dx.doi.org/10.1051/m2an/2011008
Published online 04 July 2011
  1. J. Ahn and D.E. Stewart, An Euler-Bernoulli beam with dynamic contact: discretization, convergence and numerical results. SIAM J. Numer. Anal. 43 (2005) 1455–1480. [CrossRef] [MathSciNet]
  2. N.J. Carpenter, Lagrange constraints for transient finite element surface contact. Internat. J. Numer. Methods Engrg. 32 (1991) 103–128. [CrossRef]
  3. P. Deuflhard, R. Krause and S. Ertel, A contact-stabilized Newmark method for dynamical contact problems. Internat. J. Numer. Methods Engrg. 73 (2007) 1274–1290. [CrossRef]
  4. Y. Dumont and L. Paoli, Vibrations of a beam between obstacles: convergence of a fully discretized approximation. ESAIM: M2AN 40 (2006) 705–734. [CrossRef] [EDP Sciences]
  5. Y. Dumont and L. Paoli, Numerical simulation of a model of vibrations with joint clearance. Int. J. Comput. Appl. Technol. 33 (2008) 41–53. [CrossRef]
  6. P. Hauret and P. Le Tallec, Energy controlling time integration methods for nonlinear elastodynamics and low-velocity impact. Comput. Methods Appl. Mech. Eng. 195 (2006) 4890–4916. [CrossRef] [MathSciNet]
  7. H.B. Khenous, P. Laborde and Y. Renard, Mass redistribution method for finite element contact problems in elastodynamics. Eur. J. Mech. A. Solids 27 (2008) 918–932. [CrossRef] [MathSciNet]
  8. K. Kuttler and M. Shillor, Vibrations of a beam between two stops, Dynamics of Continuous, Discrete and Impulsive Systems, Series B. Applications and Algorithms 8 (2001) 93–110.
  9. T.A. Laursen and V. Chawla, Design of energy conserving algorithms for frictionless dynamic contact problems. Internat. J. Numer. Methods Engrg. 40 (1997) 863–886. [CrossRef] [MathSciNet]
  10. T.A. Laursen and G.R. Love, Improved implicit integrators for transient impact problems-geometric admissibility within the conserving framework. Internat. J. Numer. Methods Engrg. 53 (2002) 245–274. [CrossRef] [MathSciNet]
  11. L. Paoli, Time discretization of vibro-impact. Philos. Trans. Roy. Soc. London A 359 (2001) 2405–2428. [CrossRef] [MathSciNet]
  12. L. Paoli and M. Schatzman, A numerical scheme for impact problems. I. The one-dimensional case. SIAM J. Numer. Anal. 40 (2002) 702–733. [CrossRef] [MathSciNet]
  13. L. Paoli and M. Schatzman, Numerical simulation of the dynamics of an impacting bar. Comput. Methods Appl. Mech. Eng. 196 (2007) 2839–2851. [CrossRef]
  14. A. Petrov and M. Schatzman, Viscolastodynamique monodimensionnelle avec conditions de Signorini. C. R. Acad. Sci. Paris, I 334 (2002) 983–988.
  15. A. Petrov and M. Schatzman, A pseudodifferential linear complementarity problem related to a one dimensional viscoelastic model with Signorini condition. Arch. Rational Mech. Anal., to appear.
  16. Y. Renard, The singular dynamic method for constrained second order hyperbolic equations. Application to dynamic contact problems. J. Comput. Appl. Math. 234 (2010) 906–923. [CrossRef] [MathSciNet]
  17. R.L. Taylor and P. Papadopoulos, On a finite element method for dynamic contact-impact problems. Internat. J. Numer. Methods Engrg. 36 (1993) 2123–2140. [CrossRef]

Recommended for you