Free access
Issue
ESAIM: M2AN
Volume 45, Number 6, November-December 2011
Page(s) 1193 - 1218
DOI http://dx.doi.org/10.1051/m2an/2011015
Published online 22 July 2011
  1. R.A. Adams, Sobolev Spaces, Pure Appl. Math. 65. Academic Press, New York (1975).
  2. H. Ammari, E. Iakovleva, D. Lesselier and G. Perrusson, MUSIC-type electromagnetic imaging of a collection of small three-dimensional bounded inclusions. SIAM J. Sci. Comput. 29 (2007) 674–709. [CrossRef] [MathSciNet]
  3. H. Ammari and H. Kang, High–order terms in the asymptotic expansions of the steady–state voltage potentials in the presence of conductivity inhomogeneities of small diameter. SIAM J. Math. Anal. 34 (2003) 1152–1166. [CrossRef] [MathSciNet]
  4. H. Ammari and H. Kang, Boundary layer techniques for solving the Helmholtz equation in the presence of small inhomogeneities. J. Math. Anal. Appl. 296 (2004) 190–208. [CrossRef] [MathSciNet]
  5. H. Ammari and H. Kang, Polarization and Moment Tensors with Applications to Inverse Problems and Effective Medium Theory, Appl. Math. Sci. 162. Springer-Verlag, Berlin (2007).
  6. H. Ammari and A. Khelifi, Electromagnetic scattering by small dielectric inhomogeneities. J. Math. Pures Appl. 82 (2003) 749–842. [CrossRef] [MathSciNet]
  7. H. Ammari, S. Moskow and M.S. Vogelius, Boundary integral formulae for the reconstruction of electric and electromagnetic inhomogeneities of small volume. ESAIM: COCV 9 (2003) 49–66. [CrossRef] [EDP Sciences] [MathSciNet]
  8. H. Ammari and J.K. Seo, An accurate formula for the reconstruction of conductivity inhomogeneities. Adv. Appl. Math. 30 (2003) 679–705. [CrossRef]
  9. H. Ammari, M.S. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter II. the full Maxwell equations. J. Math. Pures Appl. 80 (2001) 769–814. [CrossRef] [MathSciNet]
  10. H. Ammari and D. Volkov, Asymptotic formulas for perturbations in the eigenfrequencies of the full maxwell equations due to the presence of imperfections of small diameter. Asympt. Anal. 30 (2002) 331–350.
  11. H. Ammari and D. Volkov, The leading order term in the asymptotic expansion of the scattering amplitude of a collection of finite number of dielectric inhomogeneities of small diameter. Int. J. Multiscale Comput. Engrg. 3 (2005) 149–160. [CrossRef]
  12. D.N. Arnold, R.S. Falk and R. Winther, Multigrid in H(div) and H(curl). Numer. Math. 85 (2000) 197–217. [CrossRef] [MathSciNet]
  13. E. Beretta, Y. Capdeboscq, F. de Gournay and E. Francini, Thin cylindrical conductivity inclusions in a 3-dimensional domain: a polarization tensor and unique determination from boundary data. Inverse Problems 25 (2009) 065004. [CrossRef] [MathSciNet]
  14. E. Beretta and E. Francini, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of thin inhomogeneities Contemp. Math. 333, edited by G. Uhlmann and G. Alessandrini, Amer. Math. Soc., Providence (2003).
  15. E. Beretta, E. Francini and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of thin inhomogeneities. a rigorous error analysis. J. Math. Pures Appl. 82 (2003) 1277–1301. [CrossRef] [MathSciNet]
  16. E. Beretta, A. Mukherjee and M.S. Vogelius, Asymptotic formulas for steady state voltage potentials in the presence of conductivity imperfections of small area. Z. Angew. Math. Phys. 52 (2001) 543–572. [CrossRef] [MathSciNet]
  17. M. Brühl, M. Hanke and M.S. Vogelius, A direct impedance tomography algorithm for locating small inhomogeneities. Numer. Math. 93 (2003) 635–654. [CrossRef] [MathSciNet]
  18. Y. Capdeboscq and M.S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction. Math. Model. Numer. Anal. 37 (2003) 159–173. [CrossRef] [EDP Sciences] [MathSciNet]
  19. Y. Capdeboscq and M.S. Vogelius, Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements. Math. Model. Numer. Anal. 37 (2003) 227–240. [CrossRef] [EDP Sciences] [MathSciNet]
  20. Y. Capdeboscq and M.S. Vogelius, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction. Contemp. Math. 362, edited by C. Conca, R. Manasevich, G. Uhlmann and M.S. Vogelius, Amer. Math. Soc., Providence (2004).
  21. Y. Capdeboscq and M.S. Vogelius, Pointwise polarization tensor bounds, and applications to voltage perturbations caused by thin inhomogeneities. Asymptot. Anal. 50 (2006) 175–204. [MathSciNet]
  22. D. Cedio-Fengya, S. Moskow and M.S. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inverse Problems 14 (1998) 553–595. [CrossRef] [MathSciNet]
  23. M. Cheney, The linear sampling method and the MUSIC algorithm. Inverse Problems 17 (2001) 591–595. [CrossRef] [MathSciNet]
  24. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory. John Wiley & Sons, New York (1983).
  25. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology. Spectral Theory and Applications 3. Springer-Verlag, Berlin (1990).
  26. A. Friedman and M.S. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: a theorem on continuous dependence. Arch. Rational Mech. Anal. 105 (1989) 299–326. [CrossRef] [MathSciNet]
  27. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften 224. 2nd edition, Springer-Verlag, Berlin (1998).
  28. R. Griesmaier, An asymptotic factorization method for inverse electromagnetic scattering in layered media. SIAM J. Appl. Math. 68 (2008) 1378–1403. [CrossRef] [MathSciNet]
  29. R. Griesmaier, Reciprocity gap music imaging for an inverse scattering problem in two-layered media. Inverse Probl. Imaging 3 (2009) 389–403. [CrossRef] [MathSciNet]
  30. R. Griesmaier, Reconstruction of thin tubular inclusions in three-dimensional domains using electrical impedance tomography. SIAM J. Imaging Sci. 3 (2010) 340–362. [CrossRef] [MathSciNet]
  31. R. Griesmaier and M. Hanke, An asymptotic factorization method for inverse electromagnetic scattering in layered media II: A numerical study. Contemp. Math. 494 (2008) 61–79.
  32. R. Griesmaier and M. Hanke, MUSIC-characterization of small scatterers for normal measurement data. Inverse Problems 25 (2009) 075012. [CrossRef] [MathSciNet]
  33. E. Iakovleva, S. Gdoura, D. Lesselier and G. Perrusson, Multistatic response matrix of a 3-D inclusion in half space and MUSIC imaging. IEEE Trans. Antennas Propag. 55 (2007) 2598–2609 [CrossRef]
  34. A.M. Il'in, Matching of asymptotic expansions of solutions of boundary value problems, Translations of Mathematical Monographs 102, translated by V. Minachin, American Mathematical Society, Providence, RI (1992).
  35. A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford Lecture Ser. Math. Appl. 36. Oxford University Press, New York (2008).
  36. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000).
  37. P. Monk, Finite Element Methods for Maxwell's Equations. Numer. Math. Sci. Comput. Oxford University Press, New York (2003).
  38. F. Murat and L. Tartar, H-convergence, Progress in Nonlinear Differential Equations and Their Applications 31, edited by A. Cherkaev and R. Kohn. Birkhäuser, Boston (1997).
  39. W.-K. Park and D. Lesselier, MUSIC-type imaging of a thin penetrable inclusion from its multi-static response matrix. Inverse Problems 25 (2009) 075002. [CrossRef] [MathSciNet]
  40. W. Rudin, Real and complex analysis. McGraw-Hill Book Co., New York (1966).
  41. W. Rudin, Functional analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973).
  42. D. Volkov, Numerical methods for locating small dielectric inhomogeneities. Wave Motion 38 (2003) 189–206. [CrossRef] [MathSciNet]
  43. C. Weber, Regularity theorems for Maxwell's equations. Math. Methods Appl. Sci. 3 (1981) 523–536. [CrossRef] [MathSciNet]

Recommended for you